Comprehensive biotechnology Vol. 2/ (Record no. 180138)

MARC details
000 -LEADER
fixed length control field 00387nam a2200121Ia 4500
040 ## - CATALOGING SOURCE
Transcribing agency CUS
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 660.6
Item number MOO/C
245 #0 - TITLE STATEMENT
Title Comprehensive biotechnology Vol. 2/
Sub title principles and practices in industry agriculture medicine and the environment
Statement of responsibility, etc. Moo-Young,Murray
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc. Amsterdam:
Name of publisher, distributor, etc. Elsevier,
Date of publication, distribution, etc. 2011.
300 ## - PHYSICAL DESCRIPTION
Extent 690
505 ## - FORMATTED CONTENTS NOTE
Formatted contents note 2.01. Introduction<br/><br/>2.02. Bioengineering at the Interface between Science and Society<br/><br/>Glossary<br/><br/>2.02.1. Introduction<br/><br/>2.02.2. The Impact of Science and Technology on Society<br/><br/>2.02.3. Roots and Development of Evolutionary Biology and of Genetics<br/><br/>2.02.4. Genetic Engineering as a Source of Genetic Variants<br/><br/>2.02.5. Molecular Mechanisms and Natural Strategies of Spontaneous Genetic Variation<br/><br/>2.02.6. High Similarity between Natural Biological Evolution and the Contribution of Genetic Engineering to Biological Evolution<br/><br/>2.02.7. Risk Evaluation of Evolutionary Processes<br/><br/>2.02.8. Prospects of Bioengineering<br/><br/>2.02.9. Public Perception of Genetics, Biological Evolution, and Bioengineering<br/><br/>2.02.10. Call for Sustainability of Cultural Developments<br/><br/>2.03. Cellular Systems<br/><br/>Glossary<br/><br/>2.03.1. Introduction<br/><br/>2.03.2. Bacteria<br/><br/>2.03.3. Fungi<br/><br/>2.03.4. Plant Cells<br/><br/>2.03.5. Animal Cells<br/><br/>2.03.6. Human Stem Cells<br/><br/>2.03.7. Artificial Cells<br/><br/>2.04. Cell Growth Dynamics<br/><br/>Glossary<br/><br/>2.04.1. Introduction<br/><br/>2.04.2. Models of Cells in Submerged Culture<br/><br/>2.04.3. Models of Cells in Multiphase Fermentor<br/><br/>2.05. Reaction Kinetics and Stoichiometry<br/><br/>Glossary<br/><br/>2.05.1. Introduction<br/><br/>2.05.2. Enzyme Kinetics<br/><br/>2.05.3. Factors Affecting Reaction Kinetics<br/><br/>2.05.4. Biochemical Reaction Rate Related to Cellular Systems<br/><br/>2.05.5. Stoichiometry<br/><br/>2.06. Bioreactor Fluid Dynamics<br/><br/>Glossary<br/><br/>2.06.1. Introduction<br/><br/>2.06.2. Mixing<br/><br/>2.06.3. Residence Time Measurements of the Gas Flow<br/><br/>2.06.4. Flow around Single Bubbles<br/><br/>2.06.5. Flow around Impeller Blades<br/><br/>2.06.6. Oxygen Mass Transfer<br/><br/>2.06.7. Flow Patterns in Stirred Tanks<br/><br/>2.06.8. Flow Patterns in Bubble Columns<br/><br/>2.06.9. Take-Home Messages<br/><br/>2.07. Mixing in Bioreactor Vessels<br/><br/>Glossary<br/><br/>2.07.1. Introduction<br/><br/>2.07.2. Characterization of Mixing<br/><br/>2.07.3. Mixing Models<br/><br/>2.07.4. Experimental Verification<br/><br/>2.07.5. The Airlift<br/><br/>2.07.6. Comparison of the Reactor Types<br/><br/>2.07.7. Gas-Phase Mixing<br/><br/>2.07.8. The Meaning of Mixing<br/><br/>2.07.9. Conclusions<br/><br/>2.08. Genetic Engineering<br/><br/>Glossary<br/><br/>2.08.1. Introduction to Genetic Engineering<br/><br/>2.08.2. Molecular Cloning and Recombinant DNA Technology<br/><br/>2.08.3. Molecular Manipulations<br/><br/>2.08.4. Cellular Manipulations<br/><br/>2.09. Bio-Feedstocks<br/><br/>Glossary<br/><br/>2.09.1. Common Feedstocks<br/><br/>2.09.2. Lignocellulose<br/><br/>2.09.3. Use of Perennial Grasses<br/><br/>2.10. Substrate Hydrolysis<br/><br/>Glossary<br/><br/>2.10.1. Introduction<br/><br/>2.10.2. Substrate for Hydrolysis<br/><br/>2.10.3. Physical Methods for Hydrolysis<br/><br/>2.10.4. Chemical Methods for Hydrolysis<br/><br/>2.10.5. Enzymatic Hydrolysis<br/><br/>2.10.6. Concluding Remarks<br/><br/>2.11. Medium Formulation and Development<br/><br/>Glossary<br/><br/>2.11.1. Introduction<br/><br/>2.11.2. Medium Formulation<br/><br/>2.11.3. Medium Optimization<br/><br/>2.11.4. Genetic Algorithms<br/><br/>2.11.5. Platforms for Medium Development<br/><br/>2.12. Sterilization in Biotechnology<br/><br/>Nomenclature<br/><br/>2.12.1. Introduction<br/><br/>2.12.2. Sterilization of Gases<br/><br/>2.12.3. Sterilization of Liquids<br/><br/>2.12.4. Sterilization of Small Equipment<br/><br/>2.12.5. Sterilization of Large Equipment<br/><br/>2.12.6. Validation of Sterilization<br/><br/>2.12.7. Conclusions<br/><br/>2.13. Inoculum Preparation<br/><br/>Glossary<br/><br/>Acknowledgments<br/><br/>2.13.1. Introduction<br/><br/>2.13.2. Criteria for Inoculum Preparation for Fermentation Process<br/><br/>2.13.3. Inoculum Development Process for Fermentation<br/><br/>2.13.4. Monitoring Inoculum Development<br/><br/>2.13.5. Transfer of Inoculum to the Fermentor Vessel or Scale-Up Process<br/><br/>2.13.6. Inoculum Preparation for Antimicrobial Susceptibility Testing<br/><br/>2.13.7. Measurement of Bacteria and Inoculum Preparation<br/><br/>2.13.8. Inoculum Preparation for Viral Cultures<br/><br/>2.13.9. Inoculum Preparation for Mammalian Cell Culture<br/><br/>2.13.10. Inoculum for Immunization<br/><br/>2.13.11. Conclusion<br/><br/>2.14. Bioreactor Engineering<br/><br/>Glossary<br/><br/>Acknowledgment<br/><br/>2.14.1. Introduction<br/><br/>2.14.2. Design and Types of Bioreactors<br/><br/>2.14.3. Effects of Process Parameters on Biological Performances<br/><br/>2.14.4. Bioreactor Operation Strategy<br/><br/>2.14.5. Industrial Applications of Bioreactors<br/><br/>2.14.6. Trends in Bioreactor Engineering<br/><br/>2.15. Stirred Tank Bioreactors<br/><br/>Glossary<br/><br/>2.15.1. Introduction<br/><br/>2.15.2. Mass and Energy Balances<br/><br/>2.15.3. Kinetic Models<br/><br/>2.15.4. Case in Study: Xanthan Gum Production<br/><br/>2.16. Airlift Bioreactors<br/><br/>Glossary<br/><br/>2.16.1. Introduction<br/><br/>2.16.2. Reactor Configurations<br/><br/>2.16.3. Power Input<br/><br/>2.16.4. Gas–Liquid Hydrodynamics<br/><br/>2.16.5. Mass Transfer<br/><br/>2.16.6. Heat Transfer<br/><br/>2.16.7. Mixing<br/><br/>2.16.8. Applications<br/><br/>2.16.9. Conclusions<br/><br/>2.17. Shake-Flask Bioreactors<br/><br/>Glossary<br/><br/>2.17.1. Introduction<br/><br/>2.17.2. Specific Power Input in Shake Flasks<br/><br/>2.17.3. Out-of-Phase Phenomena in Shake Flasks<br/><br/>2.17.4. Maximum Energy Dissipation Rate in Shake Flasks<br/><br/>2.17.5. Gas/Liquid Mass Transfer in Shake Flasks<br/><br/>2.17.6. Baffled Shake Flasks<br/><br/>2.17.7. Use of Engineering Parameters for Scale-Up from Shake Flask to Stirred-Tank Reactor<br/><br/>2.17.8. Fed-Batch and Continuous Cultures in Shake Flasks<br/><br/>2.17.9. Online Measuring Techniques in Shake Flasks<br/><br/>2.18. Photobioreactors – Models of Photosynthesis and Related Effects<br/><br/>Glossary<br/><br/>2.18.1. Introduction<br/><br/>2.18.2. The P–I Curve<br/><br/>2.18.3. Mathematical Representation of Photosynthesis<br/><br/>2.18.4. Modeling and Interpretation of Irradiance<br/><br/>2.18.5. The Kinetic Model<br/><br/>2.18.6. Modeling Photoacclimation<br/><br/>2.18.7. Photosynthesis in the Bioreactor<br/><br/>2.18.8. Simulated Illumination–Darkness Cycles<br/><br/>2.18.9. Experimental Evaluation of Illumination–Darkness Cycles<br/><br/>2.18.10. Conclusions<br/><br/>2.19. Disposable Bioreactors<br/><br/>Glossary<br/><br/>2.19.1. Introduction<br/><br/>2.19.2. Types of Single-Use Bioreactors with Disposable Bags<br/><br/>2.19.3. Conclusions<br/><br/>2.20. Membrane Bioreactors<br/><br/>Glossary<br/><br/>2.20.1. Introduction<br/><br/>2.20.2. Basic Concepts in Membrane Bioreactors<br/><br/>2.20.3. Membrane Bioreactors for Production and Separation of Bioactive Molecules<br/><br/>2.20.4. Membrane Bioreactors for Bioartificial Organs and Engineered-Tissue Culture<br/><br/>2.20.5. Conclusions<br/><br/>2.21. Microbioreactors<br/><br/>Glossary<br/><br/>2.21.1. Introduction<br/><br/>2.21.2. Microfluidic Devices<br/><br/>2.21.3. Microbioreactors for Cell Culturing<br/><br/>2.21.4. Enzymatic Microreactors<br/><br/>2.21.5. Future Perspectives of Bioreactor Miniaturization<br/><br/>2.22. Biofilters<br/><br/>Glossary<br/><br/>2.22.1. Introduction<br/><br/>2.22.2. Types of Biofilters<br/><br/>2.22.3. Filter Media<br/><br/>2.22.4. Microorganisms<br/><br/>2.22.5. Factors Affecting BF Performance<br/><br/>2.22.6. Design<br/><br/>2.23. Enzyme Bioreactors<br/><br/>Glossary<br/><br/>2.23.1. Introduction<br/><br/>2.23.2. Forms of Enzymes Used in Enzyme Reactors<br/><br/>2.23.3. Enzyme Reactors<br/><br/>2.23.4. Design and Choice of Enzyme Reactors<br/><br/>2.23.5. Novel Enzyme Reactors<br/><br/>2.24. Immobilized Cell Bioreactors<br/><br/>Glossary<br/><br/>2.24.1. Introduction<br/><br/>2.24.2. Immobilization of Microbial Cells<br/><br/>2.24.3. Immobilized Cell Bioreactors: Configuration and Design Characteristics<br/><br/>2.24.4. Mass Transfer and Biokinetics in Immobilized Cell Bioreactors<br/><br/>2.24.5. Merits of Immobilized Cell Bioreactors<br/><br/>2.24.6. Potential Drawbacks<br/><br/>2.24.7. Concluding Remarks<br/><br/>2.25. Bioreactors for Solid-State Fermentation<br/><br/>Glossary<br/><br/>2.25.1. Introduction<br/><br/>2.25.2. Classification of SSF Bioreactors and Basic Principles of Operation<br/><br/>2.25.3. Tray Bioreactors<br/><br/>2.25.4. Packed-Bed Bioreactors<br/><br/>2.25.5. Rotating-Drum and Stirred-Drum Bioreactors<br/><br/>2.25.6. Forcefully Aerated Agitated Bioreactors<br/><br/>2.25.7. Challenges Related to Changes Provoked by Microbial Growth<br/><br/>2.25.8. Other Considerations<br/><br/>2.25.9. Conclusion<br/><br/>2.26. Bioreactors for Plant Cell Culture<br/><br/>Glossary<br/><br/>2.26.1. Introduction<br/><br/>2.26.2. General Aspects of Plant Cells<br/><br/>2.26.3. Various Types of Reactors for Plant Cell Culture<br/><br/>2.26.4. Operation of Plant Cell Reactors<br/><br/>2.26.5. Industrial Applications and Outlook for the Future<br/><br/>2.26.6. Summary<br/><br/>2.27. Bioreactors for Animal Cell Cultures<br/><br/>Glossary<br/><br/>2.27.1. Introduction<br/><br/>2.27.2. Bioreactor Design<br/><br/>2.27.3. Bioreactors for High Cell Density Cultures<br/><br/>2.27.4. Automation of Cell Processing toward Clinical Application<br/><br/>2.27.5. Concluding Remarks<br/><br/>2.28. Bioreactors for Tissue Engineering<br/><br/>Glossary<br/><br/>Acknowledgments<br/><br/>2.28.1. Introduction<br/><br/>2.28.2. Engineering Concepts in Tissue Mass Growth<br/><br/>2.28.3. Reactor Designs for Tissue Engineering<br/><br/>2.28.4. Noninvasive and Nondestructive Imaging Techniques to Monitor Bioreactor Tissue Cultures<br/><br/>2.28.5. Conclusions<br/><br/>2.29. Recombinant Technology<br/><br/>Glossary<br/><br/>2.29.1. Introduction<br/><br/>2.29.2. Mammalian Expression Vectors<br/><br/>2.29.3. Nonviral Gene Delivery<br/><br/>2.29.4. Cells<br/><br/>2.29.5. Host Cell Engineering<br/><br/>2.29.6. Generation of Recombinant Cell Lines<br/><br/>2.29.7. Transient Gene Expression<br/><br/>2.29.8. Regulatory Issues<br/><br/>2.30. Metabolic Regulation Analysis and Metabolic Engineering<br/><br/>Glossary<br/><br/>2.30.1. Introduction<br/><br/>2.30.2. Metabolic Engineering Practice<br/><br/>2.30.3. The Effect of Single-Gene Knockouts on the Metabolism<br/><br/>2.30.4. Global Regulators in Relation to the Cultural Environment<br/><br/>2.30.5. The Systems Biology Approach<br/><br/>2.30.6. Conclusion<br/><br/>2.31. Proteomics, Protein Engineering<br/><br/>Glossary<br/><br/>2.31.1. Introduction<br/><br/>2.31.2. Mass Spectrometry-Based Proteome Profiling Techniques<br/><br/>2.31.3. Current Advances in Protein Identification: Online and Microfluidic Proteomic Systems<br/><br/>2.31.4. Current Challenges in Proteomics<br/><br/>2.32. Heterologous Protein Expression<br/><br/>Glossary<br/><br/>2.32.1. Introduction<br/><br/>2.32.2. Heterologous Protein Expression in Bacterial Cultures<br/><br/>2.32.3. Heterologous Protein Expression in Yeast Culture<br/><br/>2.32.4. Heterologous Protein Expression in Insect Cell Culture<br/><br/>2.32.5. Heterologous Protein Expression in Mammalian Cell culture<br/><br/>2.32.6. Heterologous Protein Expression in Plant Cell Culture<br/><br/>2.32.7. Heterologous Protein Expression in Algal Cell Culture<br/><br/>2.32.8. Heterologous Protein Expression in Moss Culture<br/><br/>2.32.9. Heterologous Protein Expression in Cell-Free Systems<br/><br/>2.32.10. Summary and Future Directions<br/><br/>2.33. Biotransformations<br/><br/>Glossary<br/><br/>2.33.1. Introduction<br/><br/>2.33.2. Enzymes versus Whole Cells<br/><br/>2.33.3. Extremophiles as a Source of New Enzymes<br/><br/>2.33.4. Biotransformations as a Source of Chiral Compounds<br/><br/>2.33.5. Types of Reaction Systems<br/><br/>2.33.6. Industrial Processes – Overview on Present and Prospective Trends<br/><br/>2.34. Immobilized Enzymes<br/><br/>Glossary<br/><br/>2.34.1. Introduction<br/><br/>2.34.2. What Are Immobilized Enzymes?<br/><br/>2.34.3. Classification of Immobilized Enzymes<br/><br/>2.34.4. Approaches toward Robust Immobilized Enzymes<br/><br/>2.34.5. Engineering the Immobilized Enzymes<br/><br/>2.34.6. Prospectives and Future Developments<br/><br/>2.35. Immobilization Technology<br/><br/>Glossary<br/><br/>2.35.1. Introduction<br/><br/>2.35.2. Strategies for Cell Immobilization<br/><br/>2.35.3. Products Suitable for Immobilized Cells<br/><br/>2.35.4. Immobilized-Cell Bioreactors<br/><br/>2.35.5. Conclusions<br/><br/>2.36. Immobilized Viable Cell Biocatalysts<br/><br/>Glossary<br/><br/>2.36.1. Introduction: Development and Main Application Fields of Immobilized Cell Cultures<br/><br/>2.36.2. Original Motivation of Viable IC Technology<br/><br/>2.36.3. Current Data on IC Physiology<br/><br/>2.36.4. Proteomic Approach and Biofilm Phenotype<br/><br/>2.36.5. Conclusion<br/><br/>2.37. Fermentation Processes<br/><br/>Glossary<br/><br/>2.37.1. Introduction<br/><br/>2.37.2. Microbial Growth and Stoichiometry<br/><br/>2.37.3. Autocatalytic Nature of Microbial Growth<br/><br/>2.37.4. Cell Yields<br/><br/>2.37.5. Product Yields<br/><br/>2.38. Fed-Batch Fermentation – Design Strategies<br/><br/>Glossary<br/><br/>2.38.1. Introduction<br/><br/>2.38.2. Different Types of Fed-Batch Cultivations<br/><br/>2.38.3. Applications of Fed-Batch Cultivation<br/><br/>2.38.4. Control Techniques for Fed-Batch Fermentation<br/><br/>2.38.5. Design of Specific Fed-Batch Cultivation Strategies Using the Mathematical Model of the System<br/><br/>2.38.6. Model-Based Fed-Batch Cultivation Strategies<br/><br/>2.38.7. Parameters Used to Control the Fed-Batch Fermentations<br/><br/>2.38.8. Conclusion<br/><br/>2.39. Continuous Operation<br/><br/>Glossary<br/><br/>2.39.1. Introduction<br/><br/>2.39.2. Homogeneous System<br/><br/>2.39.3. Heterogeneous Systems<br/><br/>2.40. Multistage Continuous High Cell Density Culture<br/><br/>Glossary<br/><br/>2.40.1. Introduction<br/><br/>2.40.2. Historical Background<br/><br/>2.40.3. High Cell Density Culture<br/><br/>2.40.4. Multistage Continuous HCDC<br/><br/>2.40.5. Summary<br/><br/>2.41. Integrated Production and Separation<br/><br/>Glossary<br/><br/>2.41.1. Introduction<br/><br/>2.41.2. Integration Methodology for Reducing Process Step<br/><br/>2.41.3. Cross-Sectional Technologies through Integration Methodology<br/><br/>2.41.4. Separation Techniques for the Integration in Terms of Product Characteristics<br/><br/>2.41.5. Bioreactor Configuration for the Integration of Production and Separation<br/><br/>2.41.6. Techniques for ISPR<br/><br/>2.41.7. Process Integration by Biotechnology<br/><br/>2.41.8. Perspective for the Process Integration<br/><br/>2.42. Product Recovery<br/><br/>Glossary<br/><br/>2.42.1. Introduction<br/><br/>2.42.2. Historical Background<br/><br/>2.42.3. Modular Unit Operations in Downstream Processing<br/><br/>2.42.4. Integrated Unit Operations in Downstream Processing<br/><br/>2.42.5. Product Purification<br/><br/>2.42.6. Product Formulation and Stabilization<br/><br/>2.42.7. Conclusion<br/><br/>2.43. Membrane Systems and Technology<br/><br/>Glossary<br/><br/>2.43.1. Introduction<br/><br/>2.43.2. Membrane Materials<br/><br/>2.43.3. Membrane Configurations<br/><br/>2.43.4. Characterization of Membranes<br/><br/>2.43.5. Solute and Particle Deposition<br/><br/>2.43.6. Membrane Cleaning<br/><br/>2.43.7. Ultrafiltration and Microfiltration<br/><br/>2.43.8. Membrane Bioreactors<br/><br/>2.43.9. Membrane Chromatography<br/><br/>2.43.10. Membrane Contactors<br/><br/>2.43.11. Conclusion<br/><br/>2.44. Cell Disruption<br/><br/>Glossary<br/><br/>2.44.1. Introduction<br/><br/>2.44.2. Characteristics of the Microbial Cell Influencing Resistance to Disruption<br/><br/>2.44.3. Approaches to Microbial Cell Disruption<br/><br/>2.44.4. Large-Scale Cell Disruption Technologies<br/><br/>2.44.5. Laboratory-Scale, and Developing, Cell Disruption Technologies<br/><br/>2.44.6. Selective Product Release<br/><br/>2.44.7. Pretreatment to Augment Product Release<br/><br/>2.44.8. Integration of Biomass Formation and Product Release<br/><br/>2.44.9. Integration of Product Release and Product Recovery and Purification<br/><br/>2.44.10. Closing Remarks<br/><br/>2.45. Autolysis of Yeasts<br/><br/>Glossary<br/><br/>2.45.1. Introduction<br/><br/>2.45.2. Yeast Autolysis Mechanism<br/><br/>2.45.3. Yeast Autolysis Compounds<br/><br/>2.45.4. Conclusion<br/><br/>2.46. Precipitation and Crystallization<br/><br/>Glossary<br/><br/>Acknowledgments<br/><br/>2.46.1. Introduction<br/><br/>2.46.2. Solid–Liquid Equilibrium: Phase Diagrams<br/><br/>2.46.3. Modeling of Solid–Liquid Equilibrium<br/><br/>2.46.4. Crystallization of Proteins<br/><br/>2.46.5. Developing a Protein Crystallization Process<br/><br/>2.47. Adsorption and Chromatography<br/><br/>Glossary<br/><br/>2.47.1. Introduction<br/><br/>2.47.2. Molecular Interactions in Adsorption<br/><br/>2.47.3. Chromatographic Methods<br/><br/>2.47.4. Theoretical Aspects of Adsorption and Chromatography<br/><br/>2.47.5. Development of Adsorption and Chromatography<br/><br/>2.47.6. Conclusions<br/><br/>2.48. Modeling Chromatographic Separation<br/><br/>Glossary<br/><br/>2.48.1. Introduction<br/><br/>2.48.2. Theoretical Background<br/><br/>2.48.3. Models for Chromatography<br/><br/>2.48.4. Case Studies<br/><br/>2.48.5. Summary<br/><br/>2.49. Aqueous Two-Phase Systems<br/><br/>Glossary<br/><br/>2.49.1. Introduction<br/><br/>2.49.2. Theoretical Background<br/><br/>2.49.3. Application of ATPSs for the Recovery of Biological Products<br/><br/>2.49.4. Conclusions<br/><br/>2.50. Foam Separations<br/><br/>Glossary<br/><br/>2.50.1. Introduction<br/><br/>2.50.2. Applications of Foam Fractionation<br/><br/>2.50.3. Mechanism of Foam Fractionation<br/><br/>2.50.4. Design<br/><br/>2.50.5. Process Intensification<br/><br/>2.51. Drying<br/><br/>Glossary<br/><br/>2.51.1. Introduction<br/><br/>2.51.2. Applications<br/><br/>2.51.3. Traditional Drying Processes<br/><br/>2.51.4. Other Drying Technologies<br/><br/>2.51.5. Summary<br/><br/>2.52. Chiral Separations<br/><br/>Glossary<br/><br/>2.52.1. General Introduction<br/><br/>2.52.2. Crystallization<br/><br/>2.52.3. Chromatography<br/><br/>2.52.4. Capillary Electrophoresis<br/><br/>2.52.5. Liquid–Liquid Extraction<br/><br/>2.52.6. Membrane-Assisted Separations<br/><br/>2.52.7. Inclusion Distillation and Precipitation<br/><br/>2.53. Lab on a Chip – Future Technology for Characterizing Biotechnology Products<br/><br/>Glossary<br/><br/>Acknowledgments<br/><br/>2.53.1. Introduction<br/><br/>2.53.2. Technology<br/><br/>2.53.3. Components<br/><br/>2.53.4. Applications<br/><br/>2.53.5. Concluding Remarks<br/><br/>2.54. Protein Refolding/Renaturation<br/><br/>Glossary<br/><br/>2.54.1. Introduction<br/><br/>2.54.2. Inclusion Bodies<br/><br/>2.54.3. Isolation and Purification of Inclusion Bodies<br/><br/>2.54.4. Solubilization of Inclusion Bodies<br/><br/>2.54.5. Mechanism of Protein Aggregation<br/><br/>2.54.6. Renaturation of Denatured Protein<br/><br/>2.54.7. Concluding Remarks<br/><br/>2.55. Biogas Production<br/><br/>Glossary<br/><br/>2.55.1. Introduction<br/><br/>2.55.2. Advantages of the AD Processes<br/><br/>2.55.3. Microbiology of AD<br/><br/>2.55.4. Factors Affecting the AD Process<br/><br/>2.55.5. Types of Anaerobic Reactors<br/><br/>2.55.6. Effect of Operational and Environmental Variations on AD<br/><br/>2.55.7. Biogas Utilization<br/><br/>2.55.8. Biogas Upgrading Methods<br/><br/>2.55.9. Applications of AD Technology<br/><br/>2.56. Purification Process Design and the Influence of Product and Technology Platforms<br/><br/>Glossary<br/><br/>2.56.1. Introduction<br/><br/>2.56.2. Impurities<br/><br/>2.56.3. Purification Unit Operations<br/><br/>2.56.4. Purification Process Flow-Sheet Organization and Design<br/><br/>2.56.5. Processing Platforms – Examples and Characteristics<br/><br/>2.56.6. Conclusions<br/><br/>2.57. The Proportion of Downstream Costs in Fermentative Production Processes<br/><br/>Glossary<br/><br/>2.57.1. Introduction<br/><br/>2.57.2. Overview of literature data<br/><br/>2.57.3. Conclusions<br/><br/>2.58. Biorefinery Engineering<br/><br/>Glossary<br/><br/>Acknowledgments<br/><br/>2.58.1. Introduction<br/><br/>2.58.2. Feedstock Availability<br/><br/>2.58.3. Platform of Bioprocess Technologies<br/><br/>2.58.4. Examples of Current Improvements of Key Biorefinery Processes<br/><br/>2.58.5. Prospect<br/><br/>2.59. Instrumentation and Analytical Methods<br/><br/>2.59.1. Introduction<br/><br/>2.59.2. Physical Process Parameters<br/><br/>2.59.3. Cell Mass Measurements<br/><br/>2.59.4. Analysis of Substrates and Products<br/><br/>2.59.5. Miscellaneous Techniques<br/><br/>2.59.6. Conclusions and Remarks<br/><br/>2.60. Life Cycle Assessment in Biotechnology<br/><br/>Glossary<br/><br/>2.60.1. Introduction<br/><br/>2.60.2. The Methodology of LCA<br/><br/>2.60.3. LCA: Utility and Limitations<br/><br/>2.60.4. Application of LCA in Food Biotechnology<br/><br/>2.60.5. Application of LCA in Pharmaceutical Biotechnology<br/><br/>2.60.6. Application of LCA in Biopolymers<br/><br/>2.60.7. Application of LCA in Biofuels<br/><br/>2.60.8. Application of LCA in Biodegradable Waste Management<br/><br/>2.60.9. Some New Tendencies<br/><br/>2.61. Metabolic Control<br/><br/>Glossary<br/><br/>Acknowledgments<br/><br/>2.61.1. Introduction<br/><br/>2.61.2. Regulation of Biological Systems<br/><br/>2.61.3. Control of Biological Systems<br/><br/>2.61.4. Network Rigidity<br/><br/>2.61.5. Biochemical Systems Theory<br/><br/>2.61.6. Metabolic Control Analysis<br/><br/>2.61.7. Determination of the Flux Control Coefficients<br/><br/>2.61.8. In Vivo Applications<br/><br/>2.61.9. Conclusion<br/><br/>2.62. Fuzzy Control of Bioprocess<br/><br/>Glossary<br/><br/>2.62.1. Direct Inference of Process Variables<br/><br/>2.62.2. Determination of Process Variables Based on Identification of Culture Phase<br/><br/>2.62.3. Combination of Fuzzy Inference with Other Methods<br/><br/>2.62.4. Conclusion<br/><br/>2.63. Online Control Strategies<br/><br/>Glossary<br/><br/>Acknowledgment<br/><br/>2.63.1. Introduction<br/><br/>2.63.2. Current Practice of Bioprocess Control<br/><br/>2.63.3. Advanced Process Control Strategies<br/><br/>2.63.4. Concluding Remarks<br/><br/>2.64. Process Optimization<br/><br/>Glossary<br/><br/>2.64.1. Introduction<br/><br/>2.64.2. Review of the Most Relevant Optimization Techniques<br/><br/>2.64.3. Case Studies<br/><br/>2.64.4. Conclusions<br/><br/>2.65. Micro-Biochemical Engineering<br/><br/>Glossary<br/><br/>Acknowledgments<br/><br/>2.65.1. Introduction<br/><br/>2.65.2. Overview of Micro-Biochemical Engineering<br/><br/>2.65.3. Examples of Micro-Biochemical Engineering<br/><br/>2.65.4. Future Challenges in Applying Micro-Biochemical Engineering<br/><br/>2.65.5. Conclusions<br/><br/>2.66. Sustainability<br/><br/>Glossary<br/><br/>2.66.1. Introduction<br/><br/>2.66.2. About Sustainability<br/><br/>2.66.3. Spatial and Temporal Dimensions of Sustainability<br/><br/>2.66.4. Challenges of Sustainability<br/><br/>2.66.5. Indicators of Sustainability<br/><br/>2.66.6. Keys to Sustainable Development in Practice<br/><br/>2.66.7. Biotechnology and Sustainability<br/><br/>2.66.8. Renewable Resources and Energy<br/><br/>2.66.9. Concluding Remarks<br/><br/>2.67. Nanostructured Biocatalysts<br/><br/>Glossary<br/><br/>2.67.1. Introduction<br/><br/>2.67.2. Nonaqueous Enzymatic Catalysis<br/><br/>2.67.3. Enzymes in Nanostructures<br/><br/>2.67.4. Preparation of Enzyme Nanogels<br/><br/>2.67.5. Molecular Fundamentals of Enzyme Nanogels<br/><br/>2.67.6. Potential Applications of Enzyme Nanogels as Biocatalysts<br/><br/>2.67.7. Summary<br/><br/>2.68. Aseptic Operations<br/><br/>Glossary<br/><br/>2.68.1. Introduction<br/><br/>2.68.2. Design and Procedural Approaches to Minimizing Contamination<br/><br/>2.68.3. Fermentation/Cell Culture Considerations<br/><br/>2.68.4. Considerations for Purification and Formulation/Fill<br/><br/>2.68.5. Validation and Verification<br/><br/>2.68.6. Sterility Analysis and Culture Purity<br/><br/>2.68.7. Summary<br/><br/>2.69. Oxygen Mass Transfer in Bioreactors<br/><br/>Glossary<br/><br/>2.69.1. Introduction<br/><br/>2.69.2. Effect of Various Parameters on Oxygen Mass Transfer<br/><br/>2.69.3. Conclusions<br/><br/>2.70. Cavitation in Biotechnology<br/><br/>Glossary<br/><br/>2.70.1. Introduction<br/><br/>2.70.2. Reactor Designs<br/><br/>2.70.3. Different Applications of Cavitation<br/><br/>2.70.3.7. Concluding Remarks<br/><br/>2.71. Flow Cytometry<br/><br/>Glossary<br/><br/>2.71.1. Introduction<br/><br/>2.71.2. Description of the FC Technique<br/><br/>2.71.3. Cell Viability and Functionality<br/><br/>2.71.4. Applications to Industrial Bioprocesses<br/><br/>2.71.5. Monitoring and Control of Biotransformations<br/><br/>2.71.6. Theoretical Applications: Kinetic Modeling<br/><br/>2.71.7. Devices of Practical Use and Automation of FC Equipments<br/><br/>2.71.8. Conclusions<br/><br/>2.72. Cleaning in Place<br/><br/>Glossary<br/><br/>2.72.1. Introduction<br/><br/>2.72.2. Hygiene Agents<br/><br/>2.72.3. Overview of CIP Systems<br/><br/>2.72.4. Cleaning Principles<br/><br/>2.72.5. Other Technological Aspects<br/><br/>2.73. Ionic Liquids<br/><br/>Glossary<br/><br/>2.73.1. Introduction<br/><br/>2.73.2. Applications of Enzymes in Ionic Liquids<br/><br/>2.73.3. Environmental Impact of Ionic Liquids<br/><br/>2.73.4. Conclusions<br/><br/>2.74. Supercritical Fluids<br/><br/>Glossary<br/><br/>2.74.1. Introduction<br/><br/>2.74.2. Pure Substances as Supercritical Fluids<br/><br/>2.74.3. Properties of Supercritical Fluids<br/><br/>2.74.4. Modifiers<br/><br/>2.74.5. Solubility in a Supercritical Fluid<br/><br/>2.74.6. Calculations to Predict Whether a Modifier Is Required<br/><br/>2.74.7. Supercritical Fluid Extraction<br/><br/>2.74.8. Supercritical Fluid Chromatography<br/><br/>2.74.9. Supercritical Fluid Particle Engineering<br/><br/>2.74.10. Supercritical Fluid Tissue Engineering and Regenerative Medicine<br/><br/>2.74.11. Supercritical Fluids as Alternative Enzymatic Reaction Solvents<br/><br/>2.74.12. Sterilization Using SF-CO2<br/><br/>2.74.13. Critical Point Drying of Biological Samples<br/><br/>2.74.14. Summary<br/><br/>2.75. Computational Fluid Dynamics<br/><br/>Glossary<br/><br/>Acknowledgment<br/><br/>2.75.1. Introduction<br/><br/>2.75.2. Fundamentals<br/><br/>2.75.3. Single-Phase Flow Simulations<br/><br/>2.75.4. Multiphase Flow Simulations<br/><br/>2.75.5. CFD in Biochemical Engineering<br/><br/>2.75.6. Conclusions and Future Perspectives
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type AC Sinha Collection
Holdings
Withdrawn status Lost status Damaged status Not for loan Collection Type Home library Current library Shelving location Date acquired Full call number Accession number Date last seen Koha item type
      Not For Loan Reference Collection Central Library, Sikkim University Central Library, Sikkim University Reference 29/08/2016 660.6 MOO/C P35150 23/09/2022 Reference Books
SIKKIM UNIVERSITY
University Portal | Contact Librarian | Library Portal

Powered by Koha