000 | 03339cam a2200457 i 4500 | ||
---|---|---|---|
001 | on1368314926 | ||
003 | OCoLC | ||
005 | 20250612155527.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 230212t20232023ne a ob 001 0 eng d | ||
040 |
_aYDX _beng _erda _epn _cYDX _dOPELS _dYDX _dUKAHL _dUKMGB _dOCLCF _dINU _dTFW _dN$T _dOCLCO _dVRC |
||
015 |
_aGBC2K2149 _2bnb |
||
016 | 7 |
_a020802978 _2Uk |
|
019 | _a1372578724 | ||
020 |
_a0443184259 _qelectronic book |
||
020 |
_a9780443184253 _q(electronic bk.) |
||
020 | _z9780443184246 | ||
020 | _z0443184240 | ||
035 |
_a(OCoLC)1368314926 _z(OCoLC)1372578724 |
||
050 | 4 |
_aQA76.9.B45 _bH352 2023 |
|
082 | 0 | 4 |
_a005.7 _223/eng/20230314 |
245 | 0 | 0 |
_aHandbook of mobility data mining. _nVolume Two, _pMobility analytics and prediction / _cedited by Haoran Zhang. |
246 | 3 | 0 | _aMobility analytics and prediction |
264 | 1 |
_aAmsterdam, Netherlands ; _aOxford, United Kingdom ; _aCambridge MA : _bElsevier, _c[2023] |
|
264 | 4 | _c�2023. | |
300 |
_a1 online resource : _billustrations (some color) |
||
336 |
_atext _btxt _2rdacontent |
||
336 |
_astill image _bsti _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
505 | 0 | _aChapter one - Multi-data-based travel behavior analysis and prediction -- Chapter two - Mining individual significant places from historical trajectory data -- Chapter Three - Mobility pattern clustering with big human mobility data -- Chapter Four - Change detection of travel behavior: a case study of COVID-19 -- Chapter Five - User demographic characteristics inference based on big GPS trajectory data -- Chapter Six - Generative model for human mobility -- Chapter seven - Retrieval-based human trajectory generation -- Chapter eight - Grid-based origin-destination matrix prediction: a deep learning method with vector graph transformation similarity loss function -- Chapter Nine - MetaTraj: meta-learning for cross-scene cross-object trajectory prediction -- Chapter Ten - Social-DPF: socially acceptable distribution prediction of futures. | |
520 | _a"Handbook of Mobility Data Mining, Volume Two: Mobility Analytics and Prediction introduces the fundamental technologies of mobile big data mining (MDM), advanced AI methods, and upper-level applications, helping readers comprehensively understand MDM with a bottom-up approach. The book explains how to preprocess mobile big data, visualize urban mobility, simulate and predict human travel behavior, and assess urban mobility characteristics and their matching performance as conditions and constraints in transport, emergency management, and sustainability development systems. The book introduces how to design MDM platforms that adapt to the evolving mobility environment and new types of transportation and users."--Provided by Publisher. | ||
504 | _aIncludes bibliographical references and index. | ||
588 | _aDescription based on online resource; title from digital title page (viewed on March 23, 2023). | ||
650 | 0 | _aBig data. | |
650 | 0 | _aMobile communication systems. | |
700 | 1 |
_aZhang, Haoran _c(College teacher), _eeditor. |
|
776 | 0 | 8 |
_iPrint version: _z0443184240 _z9780443184246 _w(OCoLC)1321787571 |
856 | 4 | 0 |
_3ScienceDirect _uhttps://www.sciencedirect.com/science/book/9780443184246 |
999 |
_c216589 _d216589 |