000 03339cam a2200457 i 4500
001 on1368314926
003 OCoLC
005 20250612155527.0
006 m o d
007 cr cnu---unuuu
008 230212t20232023ne a ob 001 0 eng d
040 _aYDX
_beng
_erda
_epn
_cYDX
_dOPELS
_dYDX
_dUKAHL
_dUKMGB
_dOCLCF
_dINU
_dTFW
_dN$T
_dOCLCO
_dVRC
015 _aGBC2K2149
_2bnb
016 7 _a020802978
_2Uk
019 _a1372578724
020 _a0443184259
_qelectronic book
020 _a9780443184253
_q(electronic bk.)
020 _z9780443184246
020 _z0443184240
035 _a(OCoLC)1368314926
_z(OCoLC)1372578724
050 4 _aQA76.9.B45
_bH352 2023
082 0 4 _a005.7
_223/eng/20230314
245 0 0 _aHandbook of mobility data mining.
_nVolume Two,
_pMobility analytics and prediction /
_cedited by Haoran Zhang.
246 3 0 _aMobility analytics and prediction
264 1 _aAmsterdam, Netherlands ;
_aOxford, United Kingdom ;
_aCambridge MA :
_bElsevier,
_c[2023]
264 4 _c�2023.
300 _a1 online resource :
_billustrations (some color)
336 _atext
_btxt
_2rdacontent
336 _astill image
_bsti
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
505 0 _aChapter one - Multi-data-based travel behavior analysis and prediction -- Chapter two - Mining individual significant places from historical trajectory data -- Chapter Three - Mobility pattern clustering with big human mobility data -- Chapter Four - Change detection of travel behavior: a case study of COVID-19 -- Chapter Five - User demographic characteristics inference based on big GPS trajectory data -- Chapter Six - Generative model for human mobility -- Chapter seven - Retrieval-based human trajectory generation -- Chapter eight - Grid-based origin-destination matrix prediction: a deep learning method with vector graph transformation similarity loss function -- Chapter Nine - MetaTraj: meta-learning for cross-scene cross-object trajectory prediction -- Chapter Ten - Social-DPF: socially acceptable distribution prediction of futures.
520 _a"Handbook of Mobility Data Mining, Volume Two: Mobility Analytics and Prediction introduces the fundamental technologies of mobile big data mining (MDM), advanced AI methods, and upper-level applications, helping readers comprehensively understand MDM with a bottom-up approach. The book explains how to preprocess mobile big data, visualize urban mobility, simulate and predict human travel behavior, and assess urban mobility characteristics and their matching performance as conditions and constraints in transport, emergency management, and sustainability development systems. The book introduces how to design MDM platforms that adapt to the evolving mobility environment and new types of transportation and users."--Provided by Publisher.
504 _aIncludes bibliographical references and index.
588 _aDescription based on online resource; title from digital title page (viewed on March 23, 2023).
650 0 _aBig data.
650 0 _aMobile communication systems.
700 1 _aZhang, Haoran
_c(College teacher),
_eeditor.
776 0 8 _iPrint version:
_z0443184240
_z9780443184246
_w(OCoLC)1321787571
856 4 0 _3ScienceDirect
_uhttps://www.sciencedirect.com/science/book/9780443184246
999 _c216589
_d216589