000 | 03558cam a2200493 i 4500 | ||
---|---|---|---|
001 | on1076271744 | ||
003 | OCoLC | ||
005 | 20250612155510.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 181126t20192019ne a o 001 0 eng d | ||
040 |
_aN$T _beng _erda _epn _cN$T _dN$T _dOPELS _dOCLCF _dMERER _dOCLCQ _dWAU _dYDX _dS2H _dOCLCO _dOCLCQ _dOCLCO _dK6U _dOCLCQ _dSFB _dOCLCQ _dOCLCO _dOCLCL _dSXB _dOCLCQ |
||
019 | _a1162850834 | ||
020 |
_a9780128129715 _q(electronic bk.) |
||
020 |
_a0128129719 _q(electronic bk.) |
||
020 | _z9780128129708 | ||
020 | _z0128129700 | ||
035 |
_a(OCoLC)1076271744 _z(OCoLC)1162850834 |
||
050 | 4 | _aHE305 | |
072 | 7 |
_aBUS _x070100 _2bisacsh |
|
072 | 7 |
_aTRA _x009000 _2bisacsh |
|
082 | 0 | 4 |
_a388.4 _223 |
245 | 0 | 0 |
_aMobility patterns, big data and transport analytics : _btools and applications for modeling / _cedited by Constantinos Antoniou, Loukas Dimitriou, Francisco Pereira. |
250 | _aFirst edition. | ||
264 | 1 |
_aAmsterdam, Netherlands : _bElsevier, _c[2019] |
|
264 | 4 | _c�2019 | |
300 |
_a1 online resource (xix, 432 pages) : _billustrations (some color) |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
500 | _aIncludes index. | ||
588 | 0 | _aPrint version record. | |
520 | _aMobility Patterns, Big Data and Transport Analytics provides a guide to the new analytical framework and its relation to big data, focusing on capturing, predicting, visualizing and controlling mobility patterns - a key aspect of transportation modeling. The book features prominent international experts who provide overviews on new analytical frameworks, applications and concepts in mobility analysis and transportation systems. Users will find a detailed, mobility 'structural' analysis and a look at the extensive behavioral characteristics of transport, observability requirements and limitations for realistic transportation applications and transportation systems analysis that are related to complex processes and phenomena. This book bridges the gap between big data, data science, and transportation systems analysis with a study of big data's impact on mobility and an introduction to the tools necessary to apply new techniques. The book covers in detail, mobility 'structural' analysis (and its dynamics), the extensive behavioral characteristics of transport, observability requirements and limitations for realistic transportation applications, and transportation systems analysis related to complex processes and phenomena. The book bridges the gap between big data, data science, and Transportation Systems Analysis with a study of big data's impact on mobility, and an introduction to the tools necessary to apply new techniques. | ||
650 | 0 | _aUrban transportation. | |
650 | 0 |
_aUrban transportation _xSimulation methods. _934281 |
|
650 | 0 |
_aTraffic engineering. _934282 |
|
650 | 0 | _aBig data. | |
700 | 1 |
_aAntoniou, Constantinos, _eeditor. _934283 |
|
700 | 1 |
_aDimitriou, Loukas, _eeditor. _934284 |
|
700 | 1 |
_aPereira, Francisco Baptista, _eeditor. _934285 |
|
758 |
_ihas work: _aMobility patterns, big data and transport analytics (Text) _1https://id.oclc.org/worldcat/entity/E39PCFtcmqC6kjJ4YPTFbCYr4q _4https://id.oclc.org/worldcat/ontology/hasWork |
||
776 | 0 | 8 |
_iPrint version: _tMobility patterns, big data and transport analytics. _dAmsterdam : Elsevier, 2018 _z9780128129708 _w(OCoLC)1064617417 |
856 | 4 | 0 |
_3ScienceDirect _uhttps://www.sciencedirect.com/science/book/9780128129708 |
999 |
_c216505 _d216505 |