000 | 03762cam a2200541 i 4500 | ||
---|---|---|---|
001 | on1012400060 | ||
003 | OCoLC | ||
005 | 20250612155448.0 | ||
006 | m o d | ||
007 | cr cnu|||unuuu | ||
008 | 171120s2017 enk ob 001 0 eng d | ||
040 |
_aN$T _beng _erda _epn _cN$T _dN$T _dIDEBK _dEBLCP _dYDX _dOPELS _dUAB _dD6H _dSNK _dOCLCF _dOCLCQ _dEZ9 _dCOD _dOCLCQ _dU3W _dLVT _dMERER _dOCLCQ _dLQU _dOCLCQ _dS2H _dOCLCO _dVT2 _dOCLCQ _dOCLCO _dK6U _dOCLCQ _dSFB _dOCL _dOCLCQ _dOCLCO _dOCLCL _dSXB _dOCLCQ _dOCLCO |
||
019 |
_a1105194898 _a1105574041 _a1141933980 _a1235832973 |
||
020 |
_a9780081011706 _q(electronic bk.) |
||
020 |
_a0081011709 _q(electronic bk.) |
||
020 |
_a1785481126 _q(hbk.) |
||
020 | _a9781785481123 | ||
020 | _z9781785481123 | ||
035 |
_a(OCoLC)1012400060 _z(OCoLC)1105194898 _z(OCoLC)1105574041 _z(OCoLC)1141933980 _z(OCoLC)1235832973 |
||
050 | 4 | _aQA76.9.C62 | |
072 | 7 |
_aCOM _x013000 _2bisacsh |
|
072 | 7 |
_aCOM _x014000 _2bisacsh |
|
072 | 7 |
_aCOM _x018000 _2bisacsh |
|
072 | 7 |
_aCOM _x067000 _2bisacsh |
|
072 | 7 |
_aCOM _x032000 _2bisacsh |
|
072 | 7 |
_aCOM _x037000 _2bisacsh |
|
072 | 7 |
_aCOM _x052000 _2bisacsh |
|
072 | 7 |
_aMAT _x008000 _2bisacsh |
|
082 | 0 | 4 |
_a004.01/51 _223 |
100 | 1 |
_aBoldo, Sylvie, _eauthor. _1https://id.oclc.org/worldcat/entity/E39PBJxhjHPrYg9f68v3hVfcyd _934008 |
|
245 | 1 | 0 |
_aComputer arithmetic and formal proofs : _bverifying floating-point algorithms with the Coq system / _cSylvie Boldo, Guillaume Melquiond. |
264 | 1 |
_aLondon : _bISTE Press ; _aOxford, UK : _bElsevier, _c2017. |
|
300 | _a1 online resource | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
504 | _aIncludes bibliographical references and index. | ||
520 | _aFloating-point arithmetic is ubiquitous in modern computing, as it is the tool of choice to approximate real numbers. Due to its limited range and precision, its use can become quite involved and potentially lead to numerous failures. One way to greatly increase confidence in floating-point software is by computer-assisted verification of its correctness proofs. This book provides a comprehensive view of how to formally specify and verify tricky floating-point algorithms with the Coq proof assistant. It describes the Flocq formalization of floating-point arithmetic and some methods to automate theorem proofs. It then presents the specification and verification of various algorithms, from error-free transformations to a numerical scheme for a partial differential equation. The examples cover not only mathematical algorithms but also C programs as well as issues related to compilation. Describes the notions of specification and weakest precondition computation and their practical useShows how to tackle algorithms that extend beyond the realm of simple floating-point arithmeticIncludes real analysis and a case study about numerical analysis. | ||
588 | 0 | _aVendor-supplied metadata. | |
630 | 0 | 0 |
_aCoq (Electronic resource) _934009 |
650 | 0 |
_aComputer arithmetic. _934010 |
|
650 | 0 |
_aFloating-point arithmetic. _934011 |
|
650 | 0 | _aComputer algorithms. | |
700 | 1 |
_aMelquiond, Guillaume, _eauthor. _1https://id.oclc.org/worldcat/entity/E39PCjthBhf6wGtTxq7mHx8P73 _934012 |
|
758 |
_ihas work: _aComputer arithmetic and formal proofs (Text) _1https://id.oclc.org/worldcat/entity/E39PCFTQ4D7qCgmFRDdjbVmYWC _4https://id.oclc.org/worldcat/ontology/hasWork |
||
776 | 0 | 8 |
_iPrint version: _aBoldo, Sylvie. _tComputer arithmetic and formal proofs : verifying floating-point algorithms with the Coq system. _dLondon, England ; ISTE Press : Elsevier, �2017 _hxx, 306 pages _z9781785481123 |
856 | 4 | 0 |
_3ScienceDirect _uhttps://www.sciencedirect.com/science/book/9781785481123 |
999 |
_c216417 _d216417 |