000 03736cam a2200445 i 4500
001 on1005607910
003 OCoLC
005 20250612155446.0
006 m o d
007 cr |||||||||||
008 170609s2017 ne ob 001 0 eng d
040 _aNLE
_beng
_erda
_epn
_cNLE
_dYDX
_dN$T
_dIDEBK
_dEBLCP
_dOPELS
_dGZM
_dMERER
_dOCLCF
_dOCLCO
_dGZM
_dOCLCQ
_dUPM
_dOCLCQ
_dOCL
_dD6H
_dU3W
_dEZ9
_dOCLCQ
_dWYU
_dABC
_dLQU
_dOCLCQ
_dS2H
_dOCLCQ
_dOCLCO
_dK6U
_dOCLCQ
_dSFB
_dOCLCQ
_dOCLCO
_dOCLCL
_dSXB
_dOCLCQ
_dOCLCO
_dUKKRT
_dOCLCL
_dOCLCQ
019 _a1004739054
_a1004830792
_a1105174584
_a1105570904
020 _a9780081023518
_q(ePub ebook)
020 _a0081023510
_q(ePub ebook)
020 _z9781785482359
_q(hbk.)
020 _z1785482351
035 _a(OCoLC)1005607910
_z(OCoLC)1004739054
_z(OCoLC)1004830792
_z(OCoLC)1105174584
_z(OCoLC)1105570904
050 4 _aQA214
072 7 _aMAT
_x002040
_2bisacsh
082 0 4 _a512.32
_223
_1https://id.oclc.org/worldcat/ddc/E3ttrgpRGRTJddpgGbCPXTWJqV
100 1 _aKibler, Maurice,
_eauthor.
_1https://id.oclc.org/worldcat/entity/E39PCjJHhGyHChkWMxQH6HfMMX
_933975
245 1 0 _aGalois fields and Galois rings made easy /
_cMaurice Kibler.
264 1 _aAmsterdam :
_bElsevier,
_c2017.
300 _a1 online resource
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
500 _aThe Structures of Ring and Field Galois Fields Galois Rings Mutually Unbiased Bases Appendix on Number Theory and Group Theory.
588 0 _aCIP data; resource not viewed.
505 0 _aFront Cover; Dedication ; Galois Fields and Galois Rings Made Easy; Copyright ; Contents; Acknowledgments; Preface; List of Mathematical Symbols; Sets; Numbers; Matrices; Groups; Rings; Fields; 1. The Structures of Ring and Field; 1.1. Rings; 1.2. Fields; 2. Galois Fields; 2.1. Generalities; 2.2. Extension of a field: a typical example; 2.3. Extension of a field: the general case; 2.4. Sub-field of a Galois field; 2.5. Factorizations; 2.6. The application trace for a Galois field; 2.7. Bases of a Galois field; 2.8. Characters of a Galois field; 2.9. Gaussian sums over Galois fields.
505 8 _a3. Galois Rings3.1. Generalities; 3.2. Construction of a Galois ring; 3.3. Examples and counter-examples of Galois rings; 3.4. The application trace for a Galois ring; 3.5. Characters of a Galois ring; 3.6. Gaussian sums over Galois rings; 4. Mutually Unbiased Bases; 4.1. Generalities; 4.2. Quantum angular momentum bases; 4.3. SU(2) approach to mutually unbiased bases; 4.4. Galois field approach to mutually unbiased bases; 4.5. Galois ring approach to mutually unbiased bases; 5. Appendix on Number Theory and Group Theory; 5.1. Elements of number theory; 5.2. Elements of group theory.
504 _aIncludes bibliographical references and index.
520 8 _aAnnotation
_bPresents physicists and theoretical chemists with discussions from the field of mathematics. The bodies and Galois rings are an important field of pure mathematics. In recent years, they have proven to be very useful in theoretical physics, especially in the field of the theory of quantum information. Unfortunately, the literature on body and Galois rings is primarily made for mathematicians and is difficult to access for physicists, hence the need for this timely book.
650 0 _aGalois theory.
_94531
650 0 _aRings (Algebra)
_925267
758 _ihas work:
_aGalois fields and Galois rings made easy (Text)
_1https://id.oclc.org/worldcat/entity/E39PCGgpR3rwRFWvkKhxQM9bV3
_4https://id.oclc.org/worldcat/ontology/hasWork
776 0 8 _iPrint version :
_z9781785482359
856 4 0 _3ScienceDirect
_uhttps://www.sciencedirect.com/science/book/9781785482359
999 _c216406
_d216406