000 | 03736cam a2200445 i 4500 | ||
---|---|---|---|
001 | on1005607910 | ||
003 | OCoLC | ||
005 | 20250612155446.0 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 170609s2017 ne ob 001 0 eng d | ||
040 |
_aNLE _beng _erda _epn _cNLE _dYDX _dN$T _dIDEBK _dEBLCP _dOPELS _dGZM _dMERER _dOCLCF _dOCLCO _dGZM _dOCLCQ _dUPM _dOCLCQ _dOCL _dD6H _dU3W _dEZ9 _dOCLCQ _dWYU _dABC _dLQU _dOCLCQ _dS2H _dOCLCQ _dOCLCO _dK6U _dOCLCQ _dSFB _dOCLCQ _dOCLCO _dOCLCL _dSXB _dOCLCQ _dOCLCO _dUKKRT _dOCLCL _dOCLCQ |
||
019 |
_a1004739054 _a1004830792 _a1105174584 _a1105570904 |
||
020 |
_a9780081023518 _q(ePub ebook) |
||
020 |
_a0081023510 _q(ePub ebook) |
||
020 |
_z9781785482359 _q(hbk.) |
||
020 | _z1785482351 | ||
035 |
_a(OCoLC)1005607910 _z(OCoLC)1004739054 _z(OCoLC)1004830792 _z(OCoLC)1105174584 _z(OCoLC)1105570904 |
||
050 | 4 | _aQA214 | |
072 | 7 |
_aMAT _x002040 _2bisacsh |
|
082 | 0 | 4 |
_a512.32 _223 _1https://id.oclc.org/worldcat/ddc/E3ttrgpRGRTJddpgGbCPXTWJqV |
100 | 1 |
_aKibler, Maurice, _eauthor. _1https://id.oclc.org/worldcat/entity/E39PCjJHhGyHChkWMxQH6HfMMX _933975 |
|
245 | 1 | 0 |
_aGalois fields and Galois rings made easy / _cMaurice Kibler. |
264 | 1 |
_aAmsterdam : _bElsevier, _c2017. |
|
300 | _a1 online resource | ||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
500 | _aThe Structures of Ring and Field Galois Fields Galois Rings Mutually Unbiased Bases Appendix on Number Theory and Group Theory. | ||
588 | 0 | _aCIP data; resource not viewed. | |
505 | 0 | _aFront Cover; Dedication ; Galois Fields and Galois Rings Made Easy; Copyright ; Contents; Acknowledgments; Preface; List of Mathematical Symbols; Sets; Numbers; Matrices; Groups; Rings; Fields; 1. The Structures of Ring and Field; 1.1. Rings; 1.2. Fields; 2. Galois Fields; 2.1. Generalities; 2.2. Extension of a field: a typical example; 2.3. Extension of a field: the general case; 2.4. Sub-field of a Galois field; 2.5. Factorizations; 2.6. The application trace for a Galois field; 2.7. Bases of a Galois field; 2.8. Characters of a Galois field; 2.9. Gaussian sums over Galois fields. | |
505 | 8 | _a3. Galois Rings3.1. Generalities; 3.2. Construction of a Galois ring; 3.3. Examples and counter-examples of Galois rings; 3.4. The application trace for a Galois ring; 3.5. Characters of a Galois ring; 3.6. Gaussian sums over Galois rings; 4. Mutually Unbiased Bases; 4.1. Generalities; 4.2. Quantum angular momentum bases; 4.3. SU(2) approach to mutually unbiased bases; 4.4. Galois field approach to mutually unbiased bases; 4.5. Galois ring approach to mutually unbiased bases; 5. Appendix on Number Theory and Group Theory; 5.1. Elements of number theory; 5.2. Elements of group theory. | |
504 | _aIncludes bibliographical references and index. | ||
520 | 8 |
_aAnnotation _bPresents physicists and theoretical chemists with discussions from the field of mathematics. The bodies and Galois rings are an important field of pure mathematics. In recent years, they have proven to be very useful in theoretical physics, especially in the field of the theory of quantum information. Unfortunately, the literature on body and Galois rings is primarily made for mathematicians and is difficult to access for physicists, hence the need for this timely book. |
|
650 | 0 |
_aGalois theory. _94531 |
|
650 | 0 |
_aRings (Algebra) _925267 |
|
758 |
_ihas work: _aGalois fields and Galois rings made easy (Text) _1https://id.oclc.org/worldcat/entity/E39PCGgpR3rwRFWvkKhxQM9bV3 _4https://id.oclc.org/worldcat/ontology/hasWork |
||
776 | 0 | 8 |
_iPrint version : _z9781785482359 |
856 | 4 | 0 |
_3ScienceDirect _uhttps://www.sciencedirect.com/science/book/9781785482359 |
999 |
_c216406 _d216406 |