000 | 01464nam a2200229Ia 4500 | ||
---|---|---|---|
003 | OSt | ||
005 | 20220228160210.0 | ||
008 | 220128s9999 xx 000 0 und d | ||
020 | _a9781849969529 | ||
040 | _cCUS | ||
082 |
_a519.2 _bDEK/M |
||
100 |
_aDekking, F.M. _94204 |
||
245 | 0 | _a A Modern Introduction to Probability and Statistics: Understanding why and How | |
260 |
_aLondon: _c2005 _bSpringer, |
||
300 | _axv, 487p. | ||
505 | _aWhy probability and statistics?.- Outcomes, events, and probability.- Conditional probability and independence.- Discrete random variables.- Continuous random variables.- Simulation.- Expectation and variance.- Computations with random variables.- Joint distributions and independence.- Covariance and correlation.- More computations with more random variables.- The Poisson process.- The law of large numbers.- The central limit theorem.- Exploratory data analysis: graphical summaries.- Exploratory data analysis: numerical summaries.- Basic statistical models.- The bootstrap.- Unbiased estimators.- Efficiency and mean squared error.- Maximum likelihood.- The method of least squares.- Confidence intervals for the mean.- More on confidence intervals.- Testing hypotheses: essentials.- Testing hypotheses: elaboration.- The t-test.- Comparing two samples. | ||
700 |
_94121 _aKraaikamp, C. |
||
700 |
_94122 _aLopuhaa, H.P. |
||
700 |
_aMeester, L.E. _94123 |
||
942 |
_2ddc _cWB16 |
||
947 | _a5399 | ||
999 |
_c211220 _d211220 |