000 01464nam a2200229Ia 4500
003 OSt
005 20220228160210.0
008 220128s9999 xx 000 0 und d
020 _a9781849969529
040 _cCUS
082 _a519.2
_bDEK/M
100 _aDekking, F.M.
_94204
245 0 _a A Modern Introduction to Probability and Statistics: Understanding why and How
260 _aLondon:
_c2005
_bSpringer,
300 _axv, 487p.
505 _aWhy probability and statistics?.- Outcomes, events, and probability.- Conditional probability and independence.- Discrete random variables.- Continuous random variables.- Simulation.- Expectation and variance.- Computations with random variables.- Joint distributions and independence.- Covariance and correlation.- More computations with more random variables.- The Poisson process.- The law of large numbers.- The central limit theorem.- Exploratory data analysis: graphical summaries.- Exploratory data analysis: numerical summaries.- Basic statistical models.- The bootstrap.- Unbiased estimators.- Efficiency and mean squared error.- Maximum likelihood.- The method of least squares.- Confidence intervals for the mean.- More on confidence intervals.- Testing hypotheses: essentials.- Testing hypotheses: elaboration.- The t-test.- Comparing two samples.
700 _94121
_aKraaikamp, C.
700 _94122
_aLopuhaa, H.P.
700 _aMeester, L.E.
_94123
942 _2ddc
_cWB16
947 _a5399
999 _c211220
_d211220