000 02138nam a2200217Ia 4500
003 OSt
005 20220920132801.0
008 220128s9999 xx 000 0 und d
020 _a9783030396657
040 _cCUS
082 _a543.67
_bBER/E
100 _aBertrand,Patrick
_95008
245 0 _aElectron paramagnetic Resonance Spectroscopy Fundamentals
260 _aFrance:
_bSpringer,
_c2021.
300 _a422p.
505 _aThe electron paramagnetic resonance phenomenon -- Chapter 2 -- Hyperfine structure of a spectrum in the isotropic regime -- Chapter 3 -- Introduction to the formalism of the space of spin states. The Hamiltonian operator -- Chapter 4 -- How anisotropy of the g and A matrices affects spectrum shape for radicals and transition ion complexes -- Chapter 5 -- Spectrum intensity, saturation, spin-lattice relaxation -- Chapter 6 -- The zero-field splitting term. EPR spectrum for paramagnetic centres of spin greater than 1/2 -- Chapter 7 -- Effects of dipolar and exchange interactions on the EPR spectrum. Biradicals and polynuclear complexes -- Chapter 8 -- EPR spectrum for complexes of rare earth and actinide ions -- Chapter 9 -- How instrumental parameters affect the shape and intensity of the spectrum. Introduction to simulation methods -- Appendix 1 -- Expression of the magnetic moment of a free atom or ion -- Appendix 2 -- Expression of g and A matrices given by ligand field theory for a transition ion complex -- Appendix 3 -- Dipolar interactions between a nuclear magnetic moment and electron spin magnetic moments -- Appendix 4 -- Some properties of angular momentum operators. Spin coupling coefficients and equivalent operators. Application to Landé's formula and to dipolar hyperfine interactions. -- Appendix 5 -- The notion of spin density -- Appendix 6 -- Example of calculation of the spin-lattice relaxation time T_1: the direct process? -- Appendix 7 -- Matrix elements of operators defined from components of an angular momentum
650 _aSpectroscopy and Microscopy.
_95009
650 _aMagnetism, Magnetic Materials.
_95010
942 _2ddc
_cWB16
_01
947 _a4513
999 _c211184
_d211184