000 03726cam a22003978i 4500
020 _a9781119052920
_q(electronic bk.)
020 _a1119052920
_q(electronic bk.)
020 _a9781119052913
_q(electronic bk.)
020 _a1119052912
_q(electronic bk.)
020 _z9781119052937
020 _z1119052939
020 _z9781119052906 (cloth)
040 _cCUS
072 7 _aTEC
_x026000
_2bisacsh
100 1 _aWang, Xiwen,
_d1956-
245 1 0 _aRelative fidelity processing of seismic data :
_bmethods and applications /
_cProfessor Xiwen Wang, Petrochina, Lanzhou, Gansu [Province], CH [China].
260 _a1 edition.
260 1 _aHoboken, NJ :
_bJohn Wiley & Sons, Inc.,
_c2017.
263 _a1704
300 _a1 online resource.
490 0 _aWiley series in petroleum industry press
505 0 _aTitle Page ; Copyright Page; Contents; Preface; Chapter 1 Study on Method for Relative Fidelity Preservation of Seismic Data; 1.1 Introduction; 1.2 Discussion on Impact on Processing of High‐resolution, High SNR for Seismic Acquisition and Observation Mode; 1.3 Discussion on the Cause of Notching; 1.4 Discussion of Impact on Processing of Relative Fidelity Preservation Seismic Data for Seismic Acquisition and Observation Mode; 1.5 Comparison of Results of High-resolution, High SNR Processing and Relative Fidelity Preservation Processing ; 1.6 Elastic Wave Forward Modeling; 1.7 Conclusions
505 8 _aChapter 3 Study of Reverse Time Migration Method for Areas With Complicated Structures Based on the GPU/CPU System3.1 Introduction; 3.2 The GPU/CPU High0performance Calculation and Its Application in Seismic Exploration ; 3.2.1 Introduction of the GPU/CPU system; 3.2.2 GPU/CPU high-performance computing and the application in seismic exploration ; 3.3 Study on the Two-way Wave Extrapolation Operator and Its Boundary Conditions ; 3.3.1 High-order difference method ; 3.3.2 Boundary condition issue of reverse time migration
505 8 _a3.4 Study on the Imaging Condition and Low-frequency Noise Suppression Method 3.4.1 Study on imaging condition and low-frequency noise generation mechanism ; 3.4.2 Theory and application of Laplace filtering suppressing low-frequency noise ; 3.5 Study and Application of RTM Prestack Imaging Algorithm based on the GPU/CPU System; 3.5.1 Analysis of structural characteristics of the GPU/CPU platform; 3.5.2 Analysis of the application features of CUDA programming language in the GPU/CPU platform; 3.5.3 Realization strategy of RTM prestack imaging based on the GPU/CPU; 3.6 Conclusions; References
505 8 _aChapter 4 Study and Application of Velocity Model Building Method for the Areas with Complicated Structures4.1 Introduction; 4.2 Status Quo and the Development of the Velocity Model Building Method; 4.3 Impacting Factors for the Velocity Model Building; 4.3.1 The influences of initial velocity model accuracy on velocity modeling; 4.3.2 The influences of static correction on velocity modeling; 4.3.3 The influences of SNR on velocity modeling; 4.3.4 The influence of prestack data irregularity on velocity modeling; 4.3.5 The influences of geological body on velocity
650 0 _aSeismic prospecting.
650 0 _aPetroleum
_xProspecting.
650 0 _aPetroleum
_xGeology.
650 0 _aPetrology.
650 7 _aPetroleum
_xGeology.
_2fast
_0(OCoLC)fst01059280
650 7 _aPetroleum
_xProspecting.
_2fast
_0(OCoLC)fst01059312
650 7 _aPetrology.
_2fast
_0(OCoLC)fst01059885
650 7 _aSeismic prospecting.
_2fast
_0(OCoLC)fst01111259
650 7 _aTECHNOLOGY & ENGINEERING / Mining
_2bisacsh
856 4 0 _uhttps://doi.org/10.1002/9781119052913
_zWiley Online Library
942 _cEBK
999 _c208720
_d208720