000 | 06955cam a2200181 a 4500 | ||
---|---|---|---|
999 |
_c2000 _d2000 |
||
040 | _cCUS | ||
082 | 0 | 4 |
_a005.1 _bCOR/I |
100 |
_aThomas H. Cormen _99677 |
||
245 | 0 | 0 |
_aIntroduction to algorithms _cThomas H. Cormen ... [et al.]. |
250 | _a3rd ed. | ||
260 |
_aDelhi. : _bPHI Learning, _c2009. |
||
300 |
_axix,1292 p. : _bill. |
||
504 | _aIncludes bibliographical references (p. [1231]-1250) and index. | ||
505 | _aIntroduction 3 The Role of Algorithms in Computing 5 1.1 Algorithms 5 1.2 Algorithms as a technology 7 / Getting Started 16 2.1 Insertion sort 76 2.2 Analyzing algorithms 23 2.3 Designing algorithms 29 Growth of Functions 43 3.1 Asymptotic notation 43 3.2 Standard notations and common functions S3 Divide-and-Conquer 65 4.1 The maximum-subarray problem 68 4.2 Strassen's algorithm for matrix multiplication 75 4.3 The substitution method for solving recurrences 83 4.4 The recursion-tree method for solving recurrences 88 4.5 The master method for solving recurrences 93 4.6 Proof of the master theorem 97 Probabilistic Analysis and Randomized Algorithms 114 5.1 The hiring problem 114 5.2 Indicator random variables 118 5.3 Randomized algorithms 722 5.4 Probabilistic analysis and further uses of indicator random variables 130 II Sorting and Order Statistics Introduction 147 6 Heapsort 151 6.1 Heaps 151 6.2 Maintaining the heap properly 154 6.3 Building a heap 156 6.4 The heapsort algorithm 159 6.5 Priority queues 162 7 Quicksort 170 7.1 Description of quicksort 170 7.2 Performance of quick.sort 174 7.3 A randomized version of quicksort 179 lA Analysis of quick.sort IHO 8 Sorting in Linear Time 191 8.1 Lower bounds for sorting 191 8.2 Counting sort 194 8.3 Radix sort 197 8.4 Bucket sort 200 9 Medians and Order Statistics 213 III Data Structures 9.1 Minimum and maximum 214 9.2 Selection in expected linear time 215 9.3 Selection in worst-case linear time 220 Introduction 229 10 Elementary Data Structures 232 10.1 Stacks and queues 232 10.2 Linked lists 236 10.3 Implementing pointers and objects 241 10.4 Representing rooted trees 246 11 Hash Tables 253 11.1 Direct-address tables 254 11.2 Hash tables 256 11.3 Hash functions 262 11.4 Open addressing 269 ★ 11.5 Perfect hashing 277 12 Binary Search TYees 286 12.1 What is a binary search tree? 286 12.2 Querying a binary .search tree 289 12..^ Insertion and deletion 294 ★ 12.4 Randomly built binary search trees 299 13 Red-Black Trees 308 13.1 Properties of" red-black trees 308 13.2 Rotations 312 13.3 Insertion 315 13.4 Deletion 323 14 Augmenting Data Structures 339 14.1 Dynamic order statistics 339 14.2 How to augment a data .structure 345 14.3 Interval trees 348 IV Advanced Design and Analysis Techniques Introduction 357 15 Dynamic Programming 359 15.1 Rod cutting 360 15.2 Matrix-chain multiplication 370 15.3 Elements of dynamic programming 378 15.4 Longest common subsequence 390 15.5 Optimal binary search trees 397 16 Greedy Algorithms 414 16.1 An activity-selection problem 415 16.2 Elements of the greedy strategy 423 16.3 Huffman codes 428 ★ 16.4 Matroids and greedy methods 437 ★ 16.5 A task-scheduling problem as a matroid 443 17 Amortized Analysis 451 17.1 Aggregate analysis 452 17.2 The accounting m.ethod 456 17.3 The potential method 459 17.4 Dynamic tables 463 V Advanced Data Structures Introduction 481 18 B-Trees 484 18.1 Delinilion of B-trees 4H8 18.2 Basic operations on B-trees 491 18.3 Deleting a key from a B-trec 499 19 Fibonacci Heaps 505 19.1 Structure of Fibonacci heaps 507 19.2 Mergeable-heap operations 510 19.3 Decreasing a key and deleting a node 518 19.4 Bounding the maximum degree 523 20 van Emde Boas Trees 531 20.1 Preliminary approaches 532 20.2 A recursive structure 536 20.3 The van Emde Boas tree 545 21 Data Structures for Disjoint Sets 561 21.1 Disjoint-set operations 56/ 21.2 Linked-list representation of disjoint sets 564 21.3 Disjoint-set forests 568 ★ 21.4 Analysis of union by rank with path compression 573 VI Graph Algorithms Introduction 587 22 Elementary Graph Algorithms 589 22.1 Representations of graphs 589 22.2 Breadth-first search 594 22.3 Depth-first search 603 22.4 Topological sort 612 22.5 Strongly connected components 615 23 Minimum Spanning Trees 624 23.1 Growing a minimum spanning tree 625 23.2 The algorithms of Kruskal and Prim 631 24 Single-Source Shortest I'atlis 643 24.1 The Bcilman-Forcl aljzorilhm 65/ 24.2 Single-source shortest jxiths in directed acyclic graphs 6.s5 24.3 Dijkstra's algorithm 6.5(S' 24.4 DilTerence constraints and shortest paths 664 24.5 Proofs of shortest-paths properties 67/ 25 All-Pairs Shorte.st Paths 6H4 25.1 Shortest paths and matri.x multiplication 6.S'6 25.2 The Floyd-Warshall algorithm 693 25.3 Johnson's algorithm for sparse graphs 700 26 Maximum Flow 708 26.1 Flow networks 709 26.2 The Ford-Fulkerson method 7/4 26.3 Maximum bipartite matching 732 ★ 26.4 Push-relabel algorithms 736 ★ 26.5 The relabel-to-front algorithm 748 VII Selected Topics Introduction 769 27 Multithreaded Algorithms 772 , 27.1 The basics of dynamic multithreading 774 27.2 Multithreaded matrix multiplication 792 27.3 Multithreaded merge sort 797 28 Matrix Operations 813 28.1 Solving systems of linear equations 813 28.2 Inverting matrices 827 28.3 Symmetric positive-definite matrices and least-squares approximation 832 29 Linear Programming 843 29.1 Standard and slack forms 850 29.2 Formulating problems as linear programs 859 29.3 The simplex algorithm 864 29.4 Duality 879 29.5 The initial basic feasible solution 886 30 Polynomials and the FfT 898 30.1 Representing polynomials 900 30.2 The DFT and FFT 906 30.3 Efficient FFT implementations 915 31 Number-Theoretic Algorithms 926 31.1 Elementary number-theoretic notions 927 31.2 Greate.st common divisor 933 31.3 Modular arithmetic 939 31.4 Solving modular linear equations 946 31.5 The Chine.se remainder theorem 950 31.6 Powers of an element 954 31.7 The RSA public-key cryptosystem 958 ★ 31.8 Primality testing 965 ★ 31.9 Integer factorization 975 32 String Matching 985 32.1 The naive .string-matching algorithm 988 32.2 The Rabin-Karp algorithm 990 32.3 String matching with finite automata 995 ★ 32.4 The Knuth-Morris-Pratt algorithm 1002 33 Computational Geometry 1014 33.1 Line-segment properties I0I5 33.2 Determining whether any pair of segments intersects 1021 33.3 Finding the convex hull 1029 33.4 Finding the closest pair of points 1039 34 NP-Completeness 1048 34.1 Polynomial time 1053 34.2 Polynomial-time verification 1061 34.3 NP-completeness and reducibility 1067 34.4 NP-completeness proofs 1078 34.5 NP-complete problems 1086 35 Approximation Algorithms 1106 35.1 The vertex-cover problem 1108 35.2 The traveling-salesman problem 1111 35.3 The set-covering problem 1117 35.4 Randomization and linear programming 1123 35.5 The subset-sum problem 1128 | ||
650 | 0 |
_aComputer Programming. _9587 |
|
650 | 0 |
_aComputer Algorithms. _99678 |
|
942 |
_cWB16 _06 |