000 | 01594 a2200193 4500 | ||
---|---|---|---|
999 |
_c198794 _d198794 |
||
020 | _a9781107512825 | ||
040 | _cCUS | ||
100 |
_a Shalev-Shwartz, Shai _914111 |
||
245 |
_aUnderstanding Machine Learning: From Theory to Algorithms/ _cShai Shalev-Shwartz, Shai Ben-David |
||
250 | _a1st ed. | ||
260 |
_bCambridge University Press, _aNew Delhi: _c2014 |
||
300 |
_axvi, 397 p. : _bill. ; _c26 cm. |
||
505 | _aIntroduction -- Part I. Foundations -- 2 A gentle start -- 3 A formal learning model -- 4 Learning via uniform convergence -- 5 The bias-complexity tradeoff -- 6 The VC-dimension -- 7 Nonuniform learnability -- 8 The runtime of learning -- Part II. From Theory to Algorithms -- 9 Linear predictors -- 10 Boosting -- 11 Model selection and validation -- 12 Convex learning problems -- 13 Regularization and stability -- 14 Stochastic gradient descent -- 15 Support vector machines -- 16 Kernel methods -- 17 Multiclass, ranking, and complex prediction problems -- 18 Decision trees -- 19 Nearest neighbor -- 20 Neural networks -- Part III. Additional Learning Models -- 21 Online learning -- 22 Clustering -- 23Dimensionality reduction -- 24 Generative models -- 25 Feature selection and generation -- Part IV. Advanced Theory -- 26 Rademacher complexities -- 27 Covering numbers -- 28 Proof of the fundamental theorem of learning theory -- 29 Multiclass learnability -- 30 Compression bounds -- 31 PAC-Bayes. | ||
650 |
_aMachine Learning _911899 |
||
650 |
_aAlgorithms _910139 |
||
650 |
_aComputers _98557 |
||
700 |
_aBen-David, Shai _914112 |
||
942 |
_cWB16 _03 |