000 01594 a2200193 4500
999 _c198794
_d198794
020 _a9781107512825
040 _cCUS
100 _a Shalev-Shwartz, Shai
_914111
245 _aUnderstanding Machine Learning: From Theory to Algorithms/
_cShai Shalev-Shwartz, Shai Ben-David
250 _a1st ed.
260 _bCambridge University Press,
_aNew Delhi:
_c2014
300 _axvi, 397 p. :
_bill. ;
_c26 cm.
505 _aIntroduction -- Part I. Foundations -- 2 A gentle start -- 3 A formal learning model -- 4 Learning via uniform convergence -- 5 The bias-complexity tradeoff -- 6 The VC-dimension -- 7 Nonuniform learnability -- 8 The runtime of learning -- Part II. From Theory to Algorithms -- 9 Linear predictors -- 10 Boosting -- 11 Model selection and validation -- 12 Convex learning problems -- 13 Regularization and stability -- 14 Stochastic gradient descent -- 15 Support vector machines -- 16 Kernel methods -- 17 Multiclass, ranking, and complex prediction problems -- 18 Decision trees -- 19 Nearest neighbor -- 20 Neural networks -- Part III. Additional Learning Models -- 21 Online learning -- 22 Clustering -- 23Dimensionality reduction -- 24 Generative models -- 25 Feature selection and generation -- Part IV. Advanced Theory -- 26 Rademacher complexities -- 27 Covering numbers -- 28 Proof of the fundamental theorem of learning theory -- 29 Multiclass learnability -- 30 Compression bounds -- 31 PAC-Bayes.
650 _aMachine Learning
_911899
650 _aAlgorithms
_910139
650 _aComputers
_98557
700 _aBen-David, Shai
_914112
942 _cWB16
_03