| 000 | a | ||
|---|---|---|---|
| 999 |
_c196675 _d196675 |
||
| 020 | _a9781461298762 | ||
| 040 | _cCUS | ||
| 082 |
_a515.94 _bGRA/S |
||
| 100 | _aGrauert, H | ||
| 245 |
_aSeveral complex variables / _cH Grauert, K Fritzsche |
||
| 260 |
_bSpringer- Verlag(GTM) _aNew York: _c1976 |
||
| 300 |
_aviii, 207 p. _bPB |
||
| 505 | _aI Holomorphic Functions.- 1 Power Series.- 2 Complex Differentiable Functions.- 3 The Cauchy Integral.- 4 Identity Theorems.- 5 Expansion in Reinhardt Domains.- 6 Real and Complex Differentiability.- 7 Holomorphic Mappings.- II Domains of Holomorphy.- 1 The Continuity Theorem.- 2 Pseudoconvexity.- 3 Holomorphic Convexity.- 4 The Thullen Theorem.- 5 Holomorphically Convex Domains.- 6 Examples.- 7 Riemann Domains over ?n.- 8 Holomorphic Hulls.- III The Weierstrass Preparation Theorem.- 1 The Algebra of Power Series.- 2 The Weierstrass Formula.- 3 Convergent Power Series.- 4 Prime Factorization.- 5 Further Consequences (Hensel Rings, Noetherian Rings).- 6 Analytic Sets.- IV Sheaf Theory.- 1 Sheaves of Sets.- 2 Sheaves with Algebraic Structure.- 3 Analytic Sheaf Morphisms.- 4 Coherent Sheaves.- V Complex Manifolds.- 1 Complex Ringed Spaces.- 2 Function Theory on Complex Manifolds.- 3 Examples of Complex Manifolds.- 4 Closures of ?n.- VI Cohomology Theory.- 1 Flabby Cohomology.- 2 The ?ech Cohomology.- 3 Double Complexes.- 4 The Cohomology Sequence.- 5 Main Theorem on Stein Manifolds.- VII Real Methods.- 1 Tangential Vectors.- 2 Differential Forms on Complex Manifolds.- 3 Cauchy Integrals.- 4 Dolbeault Lemma.- 5 Fine Sheaves (Theorems of Dolbeault and de Rham).- List of symbols. | ||
| 942 | _cWB16 | ||