000 | 00370nam a2200145Ia 4500 | ||
---|---|---|---|
999 |
_c170366 _d170366 |
||
020 | _a9780387953359 | ||
040 | _cCUS | ||
082 |
_a512.7 _bROS/N |
||
100 | _aRosen, Michael | ||
245 | 0 |
_aNumber theory in function fields/ _cMichael Rosen |
|
260 |
_aNew York: _bSpringer, _c2002. |
||
300 |
_axii, 358 p. ; _c25 cm. |
||
440 |
_a(Graduate texts in mathematics), _v210 |
||
505 | _a1. Polynomials over finite fields -- 2. Primes, Arithmetic functions, and the zeta function -- 3. The reciprocity law -- 4. Dirichlet L-series and primes in an arithmetic progression -- 5. Algebraic function fields and global function fields -- 6. Weil differentials and the canonical class -- 7. Extensions of function fields, Riemann-Hurwitz, and the ABC theorem -- 8. Constant field extensions -- 9. Galois extensions : Hecke and Artin L-series -- 10. Artin's primitive root conjecture -- 11. The behavior of the class group in constant field extensions -- 12. Cyclotomic function fields -- 13. Drinfeld modules : an introduction -- 14. S-units, S-class group, and the corresponding L-functions -- 15. The Brumer-Stark conjecture -- 16. The class number formulas in quadratic and cyclotomic function fields -- 17. Average value theorems in function fields -- Appendix. A proof of the function field Riemann hypothesis. | ||
650 | _aNumber theory | ||
650 | _aAlgebraic Geometry | ||
650 | _aMathematics | ||
942 | _cWB16 |