Amazon cover image
Image from Amazon.com
Image from Coce

Algebraic Topology

By: Material type: TextPublication details: New York: Springer, 1966Description: xiv, 528pISBN:
  • 9780387944265
Subject(s): DDC classification:
  • 514.2 SPA/A
Contents:
XIV, 528 S. 24 cm Contents: 1 Set theory.- 2 General topology.- 3 Group theory.- 4 Modules.- 5 Euclidean spaces.- 1 Homotopy and The Fundamental Group.- 1 Categories.- 2 Functors.- 3 Homotopy.- 4 Retraction and deformation.- 5 H spaces.- 6 Suspension.- 7 The fundamental groupoid.- 8 The fundamental group.- Exercises.- 2 Covering Spaces and Fibrations.- 1 Covering projections.- 2 The homotopy lifting property.- 3 Relations with the fundamental group.- 4 The lifting problem.- 5 The classification of covering projections.- 6 Covering transformations.- 7 Fiber bundles.- 8 Fibrations.- Exercises.- 3 Polyhedra.- 1 Simplicial complexes.- 2 Linearity in simplicial complexes.- 3 Subdivision.- 4 Simplicial approximation.- 5 Contiguity classes.- 6 The edge-path groupoid.- 7 Graphs.- 8 Examples and applications.- Exercises.- 4 Homology.- 1 Chain complexes.- 2 Chain homotopy.- 3 The homology of simplicial complexes.- 4 Singular homology.- 5 Exactness.- 6 Mayer-Vietoris sequences.- 7 Some applications of homology.- 8 Axiomatic characterization of homology.- Exercises.- 5 Products.- 1 Homology with coefficients.- 2 The universal-coefficient theorem for homology.- 3 The Kunneth formula.- 4 Cohomology.- 5 The universal-coefficient theorem for cohomology.- 6 Cup and cap products.- 7 Homology of fiber bundles.- 8 The cohomology algebra.- 9 The Steenrod squaring operations.- Exercises.- 6 General Cohomology Theory and Duality.- 1 The slant product.- 2 Duality in topological manifolds.- 3 The fundamental class of a manifold.- 4 The Alexander cohomology theory.- 5 The homotopy axiom for the Alexander theory.- 6 Tautness and continuity.- 7 Presheaves.- 8 Fine presheaves.- 9 Applications of the cohomology of presheaves.- 10 Characteristic classes.- Exercises.- 7 Homotopy Theory.- 1 Exact sequences of sets of homotopy classes.- 2 Higher homotopy groups.- 3 Change of base points.- 4 The Hurewicz homomorphism.- 5 The Hurewicz isomorphism theorem.- 6 CW complexes.- 7 Homotopy functors.- 8 Weak homotopy type.- Exercises.- 8 Obstruction Theory.- 1 Eilenberg-MacLane spaces.- 2 Principal fibrations.- 3 Moore-Postnikov factorizations.- 4 Obstruction theory.- 5 The suspension map.- Exercises.- 9 Spectral Sequences and Homotopy Groups of Spheres.- 1 Spectral sequences.- 2 The spectral sequence of a fibration.- 3 Applications of the homology spectral sequence.- 4 Multiplicative properties of spectral sequences.- 5 Applications of the cohomology spectral sequence.- 6 Serre classes of abelian groups.- 7 Homotopy groups of spheres.-
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 1.0 (1 votes)
Holdings
Cover image Item type Current library Home library Collection Shelving location Call number Materials specified Vol info URL Copy number Status Notes Date due Barcode Item holds Item hold queue priority Course reserves
General Books Central Library, Sikkim University General Book Section 514.2 SPA/A (Browse shelf(Opens below)) Available 050581
Total holds: 0

XIV, 528 S. 24 cm
Contents: 1 Set theory.- 2 General topology.- 3 Group theory.- 4 Modules.- 5 Euclidean spaces.- 1 Homotopy and The Fundamental Group.- 1 Categories.- 2 Functors.- 3 Homotopy.- 4 Retraction and deformation.- 5 H spaces.- 6 Suspension.- 7 The fundamental groupoid.- 8 The fundamental group.- Exercises.- 2 Covering Spaces and Fibrations.- 1 Covering projections.- 2 The homotopy lifting property.- 3 Relations with the fundamental group.- 4 The lifting problem.- 5 The classification of covering projections.- 6 Covering transformations.- 7 Fiber bundles.- 8 Fibrations.- Exercises.- 3 Polyhedra.- 1 Simplicial complexes.- 2 Linearity in simplicial complexes.- 3 Subdivision.- 4 Simplicial approximation.- 5 Contiguity classes.- 6 The edge-path groupoid.- 7 Graphs.- 8 Examples and applications.- Exercises.- 4 Homology.- 1 Chain complexes.- 2 Chain homotopy.- 3 The homology of simplicial complexes.- 4 Singular homology.- 5 Exactness.- 6 Mayer-Vietoris sequences.- 7 Some applications of homology.- 8 Axiomatic characterization of homology.- Exercises.- 5 Products.- 1 Homology with coefficients.- 2 The universal-coefficient theorem for homology.- 3 The Kunneth formula.- 4 Cohomology.- 5 The universal-coefficient theorem for cohomology.- 6 Cup and cap products.- 7 Homology of fiber bundles.- 8 The cohomology algebra.- 9 The Steenrod squaring operations.- Exercises.- 6 General Cohomology Theory and Duality.- 1 The slant product.- 2 Duality in topological manifolds.- 3 The fundamental class of a manifold.- 4 The Alexander cohomology theory.- 5 The homotopy axiom for the Alexander theory.- 6 Tautness and continuity.- 7 Presheaves.- 8 Fine presheaves.- 9 Applications of the cohomology of presheaves.- 10 Characteristic classes.- Exercises.- 7 Homotopy Theory.- 1 Exact sequences of sets of homotopy classes.- 2 Higher homotopy groups.- 3 Change of base points.- 4 The Hurewicz homomorphism.- 5 The Hurewicz isomorphism theorem.- 6 CW complexes.- 7 Homotopy functors.- 8 Weak homotopy type.- Exercises.- 8 Obstruction Theory.- 1 Eilenberg-MacLane spaces.- 2 Principal fibrations.- 3 Moore-Postnikov factorizations.- 4 Obstruction theory.- 5 The suspension map.- Exercises.- 9 Spectral Sequences and Homotopy Groups of Spheres.- 1 Spectral sequences.- 2 The spectral sequence of a fibration.- 3 Applications of the homology spectral sequence.- 4 Multiplicative properties of spectral sequences.- 5 Applications of the cohomology spectral sequence.- 6 Serre classes of abelian groups.- 7 Homotopy groups of spheres.-

There are no comments on this title.

to post a comment.
SIKKIM UNIVERSITY
University Portal | Contact Librarian | Library Portal