Amazon cover image
Image from Amazon.com
Image from Coce

Programming with Mathematica : an introduction / by Paul Wellin.

By: Material type: TextPublication details: Cambridge, UK ; New York : Cambridge University Press, 2013.Description: xviii, 711 p. : ill. (some col.) ; 25 cmISBN:
  • 9781107009462 (hbk.)
Subject(s): DDC classification:
  • 005.133 WEL/P
Contents:
1 An introduction to Mathematica 1.1 Overview of basic operations • i Numerical and ^mbolic computation ■ Graphics and visualization ■ Working with data • Dynamic interactivity • Programming 1.2 Getting started • 14 Starting up Mathematica ■ The notebook interface ■ Entering input ■ Mathematical expressions • Syntax of functions ■ Lists ■ Semicolons ■ Alternative input syntax • Comments • Errors • Getting out of trouble ■ Thefront end and the kernel 1.3 Getting help • 25 Function information • The Documentation Center 2 The Mathematica language 2.1 Expressions • 29 Types ofexpressions • Atoms ■ Structure of expressions ■ Evaluation of expressions ■ Exercises 2.2 Definitions • 40 Defining variables and functions • Immediate vs. delayed assignments • Term rewriting • Functions with multiple definitions • Exercises 2.3 Predicates and Boolean operations • 48 Predicates • Relational and logical operators ■ Exercises 2.4 Attributes -53 ; . Exercises . .. Lists 3.1 Creating and displaying lists • 58 List structure and ^ntax • List construction ■ Displaying lists ■ Arrays • Exercises 3.2 The structure of lists • 67 Testing a list ■ Measuring lists ■ Exercises 3.3 Operations on lists • 70 Extracting elements ■ Rearranging lists ■ List component assignment • Multiple lists • Exercises Patterns and rules 4.1 Patterns • 85 Blanks ■ Pattern matching by type • Structured patterns • Sequence pattern matching ■ Conditional pattern matching ■ Alternatives ■ Repeated patterns ■ Functions that use patterns ■ Exercises 4.2 Transformation rules • 102 Creating and using replacement rules ■ Example: counting coins ■ Example: closed paths ■ Example: finding maxima ■ Exercises 4.3 Examples and applications • 109 Finding subsequences ■ Sorting a list • Exercises Functional programming 5.1 Introduction • 116 5.2 Functions for manipulating expressions • 118 Map • Apply • Thread and MapThread • The Listable attribute • Inner and Outer • Select and Pick • Exercises 5.3 Iterating functions • 132 Nest • FixedPoint • NestWhile • Fold ■ Exercises 5.4 Programs as functions • 137 Building up programs • Example: shuffling cards • Compound Junctions • Exercises 5.5 Scoping constructs • 146 Localizing names: Module ■ Localizing values: Block ■ Localizing constants: With ■ Example: matrix manipulation ■ Exercises 5.6 Pure functions -153 Syntax of pure functions • Using pure Junctions ■ Example: searching for attributes and options • Exercises • 57 Options and messages • 164 Options ■ Messages ■ Exercises 5.8 Examples and applications • 170 Hamming distance • The Josephus problem • Regular graphs/polygons ■ Protein interaction networks ■ Palettes for projectfiles ■ Operating on arrays • Exercises 6 Procedural programming 6.1 Loops and iteration * 190 Newton's method • Do loops and For loops ■ Example: random permutations • While loops • NestWhile and NestWhileList • Exercises 6.2 Flow control • 208 Conditional functions • Piecewise-defined Junctions ■ Which and Switch • Argument checking ■ Exercises 6.3 Examples and applications • 219 Classifying points • Sieve of Eratosthenes • Sorting algorithms ■ Exercises 7 Recursion 7.1 Fibonacci numbers • 231 Exercises 7.2 Thinking recursively • 234 Length of a list ■ Recursion with multiple arguments ■ Multiplying pairwise elements • Dealing cards, recursively • Finding maxima • Higher-order functions • Exercises 7.3 Dynamic programming • 239 Exercises 7.4 Classical examples • 244 Merge sort ■ Run-length encoding • Exercises 8 Numerics 8.1 Numbers in Mathematica -251 Types of numbers • Digits and number bases ■ Random numbers • Exercises 8.2 Numerical computation • 265 Precision and accuracy ■ Representation of approximate numbers • Exact vs. approximate numbers • High precision vs. machine precision ■ Computations with mixed number types ■ Working with precision and accuracy • Exercises 8.3 Arrays of numbers • 282 Sparse arrays ■ Packed arrays ■ Exercises 8.4 Examples and applications • 291 Newton's method revisited • Radius ofgyration of a random walk • Statistical tests • Exercises 9 Strings 9.1 Structure and syntax • 310 Character codes ■ Sorting lists of characters ■ Ordered words ■ Exercises 9.2 Operations on strings • 316 Basic string operations • Strings vs. lists • Encoding text • Indexed ^mbols • Anagrams • Exercises 9.3 String patterns • 325 Finding subsequences with strings ■ Alternatives ■ Exercises 9.4 Regular expressions • 332 Word stemming ■ Exercises 9.5 Examples and applications • 343 Random strings ■ Partitioning strings ■ Adler checksum • Search for substrings ■ DNA sequence analysis ■ Displaying DNA sequences ■ Blanagrams • Exercises 10 Graphics and visualization 10.1 Structure of graphics • 365 Graphics primitives ■ Graphics directives ■ Graphics options ■ Combining graphics elements ■ Structure of built- in graphics functions • Example: Bezier curves • Example: hypocycloids • Exercises 10.2 Efficient structures • 386 Multi-objects • GraphicsComplex • Numeric vs. symbolic expressions • Exercises 10.3 Sound • 396 The sound of mathematics ■ Sound primitives and direaives ■ Exercises 10.4 Examples and applications • 402 Spacefilling plots ■ Plotting lines in space ■ Simple closed paths ■ Points in a polygon ■ Visualizing standard deviations ■ Root plotting ■ Trend plots ■ Brownian music ■ Exercises 11 Dynamic expressions II.I Manipulating expressions • 449 Control objects ■ Control wrapper ■ Viewers ■ Animating the hypog'cloid ■ Visualizing logical operators ■ Exercises 11.2 The structure of dynamic expressions • 470 Dynamic ■ DynamicModule ■ Dynamic tips ■ Exercises 11.3 Examples and applications • 481 Creating interfaces for visualizing data ■ File openers • Dynamic random walks • Apollonius' circle • Exercises 12 Optimizing Mathematica programs 12.1 Measuring efficiency • 494 Evaluation time • Memory stoi'age 12.2 Efficient programs • 496 Low-level vs. high-level functions ■ Pattern matching • Reducing size of computation • Symbolic vs. numeric computation ■ Listabili^ • Pure functions • Packed arrays ■ Exercises 12.3 Parallel processing • 515 Basic examples • Distributing definitions across subkemels • Profiling • Exercises 12.4 Compiling • 523 Compile • Compiling to C • Exercises 13 Applications and packages 13.1 Random walk application • 534 Lattice walks ■ Off-lattice walks ■ RandomWalk ■ Error and usage messages ■ Visualization • Animation • Exercises 13.2 Overview of packages -555 Working with packages • Package location 13.3 Contexts • 558 13.4 Creating packages • 563 Package framework • Creating and installing the package ■ RandomWalks package • Running the package • Exercises
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Cover image Item type Current library Home library Collection Shelving location Call number Materials specified Vol info URL Copy number Status Notes Date due Barcode Item holds Item hold queue priority Course reserves
General Books Central Library, Sikkim University General Book Section 005.133 WEL/P (Browse shelf(Opens below)) Available P31363
Total holds: 0

Includes bibliographical references (p. [687]-694) and index.

1 An introduction to Mathematica
1.1 Overview of basic operations • i
Numerical and ^mbolic computation ■ Graphics and visualization ■ Working with data • Dynamic
interactivity • Programming
1.2 Getting started • 14
Starting up Mathematica ■ The notebook interface ■ Entering input ■ Mathematical expressions • Syntax of
functions ■ Lists ■ Semicolons ■ Alternative input syntax • Comments • Errors • Getting out of trouble ■ Thefront
end and the kernel
1.3 Getting help • 25
Function information • The Documentation Center
2 The Mathematica language
2.1 Expressions • 29
Types ofexpressions • Atoms ■ Structure of expressions ■ Evaluation of expressions ■ Exercises
2.2 Definitions • 40
Defining variables and functions • Immediate vs. delayed assignments • Term rewriting • Functions with
multiple definitions • Exercises
2.3 Predicates and Boolean operations • 48
Predicates • Relational and logical operators ■ Exercises
2.4 Attributes -53 ; .
Exercises . ..
Lists
3.1 Creating and displaying lists • 58
List structure and ^ntax • List construction ■ Displaying lists ■ Arrays • Exercises
3.2 The structure of lists • 67
Testing a list ■ Measuring lists ■ Exercises
3.3 Operations on lists • 70
Extracting elements ■ Rearranging lists ■ List component assignment • Multiple lists • Exercises
Patterns and rules
4.1 Patterns • 85
Blanks ■ Pattern matching by type • Structured patterns • Sequence pattern matching ■ Conditional pattern
matching ■ Alternatives ■ Repeated patterns ■ Functions that use patterns ■ Exercises
4.2 Transformation rules • 102
Creating and using replacement rules ■ Example: counting coins ■ Example: closed paths ■ Example: finding
maxima ■ Exercises
4.3 Examples and applications • 109
Finding subsequences ■ Sorting a list • Exercises
Functional programming
5.1 Introduction • 116
5.2 Functions for manipulating expressions • 118
Map • Apply • Thread and MapThread • The Listable attribute • Inner and Outer • Select and Pick • Exercises
5.3 Iterating functions • 132
Nest • FixedPoint • NestWhile • Fold ■ Exercises
5.4 Programs as functions • 137
Building up programs • Example: shuffling cards • Compound Junctions • Exercises
5.5 Scoping constructs • 146
Localizing names: Module ■ Localizing values: Block ■ Localizing constants: With ■ Example: matrix
manipulation ■ Exercises
5.6 Pure functions -153
Syntax of pure functions • Using pure Junctions ■ Example: searching for attributes and options • Exercises •
57 Options and messages • 164
Options ■ Messages ■ Exercises
5.8 Examples and applications • 170
Hamming distance • The Josephus problem • Regular graphs/polygons ■ Protein interaction networks ■ Palettes
for projectfiles ■ Operating on arrays • Exercises
6 Procedural programming
6.1 Loops and iteration * 190
Newton's method • Do loops and For loops ■ Example: random permutations • While loops • NestWhile and
NestWhileList • Exercises
6.2 Flow control • 208
Conditional functions • Piecewise-defined Junctions ■ Which and Switch • Argument checking ■ Exercises
6.3 Examples and applications • 219
Classifying points • Sieve of Eratosthenes • Sorting algorithms ■ Exercises
7 Recursion
7.1 Fibonacci numbers • 231
Exercises
7.2 Thinking recursively • 234
Length of a list ■ Recursion with multiple arguments ■ Multiplying pairwise elements • Dealing cards,
recursively • Finding maxima • Higher-order functions • Exercises
7.3 Dynamic programming • 239
Exercises
7.4 Classical examples • 244
Merge sort ■ Run-length encoding • Exercises
8 Numerics
8.1 Numbers in Mathematica -251
Types of numbers • Digits and number bases ■ Random numbers • Exercises
8.2 Numerical computation • 265
Precision and accuracy ■ Representation of approximate numbers • Exact vs. approximate numbers • High
precision vs. machine precision ■ Computations with mixed number types ■ Working with precision and
accuracy • Exercises
8.3 Arrays of numbers • 282
Sparse arrays ■ Packed arrays ■ Exercises
8.4 Examples and applications • 291
Newton's method revisited • Radius ofgyration of a random walk • Statistical tests • Exercises
9 Strings
9.1 Structure and syntax • 310
Character codes ■ Sorting lists of characters ■ Ordered words ■ Exercises
9.2 Operations on strings • 316
Basic string operations • Strings vs. lists • Encoding text • Indexed ^mbols • Anagrams • Exercises
9.3 String patterns • 325
Finding subsequences with strings ■ Alternatives ■ Exercises
9.4 Regular expressions • 332
Word stemming ■ Exercises
9.5 Examples and applications • 343
Random strings ■ Partitioning strings ■ Adler checksum • Search for substrings ■ DNA sequence analysis ■
Displaying DNA sequences ■ Blanagrams • Exercises
10 Graphics and visualization
10.1 Structure of graphics • 365
Graphics primitives ■ Graphics directives ■ Graphics options ■ Combining graphics elements ■ Structure of built-
in graphics functions • Example: Bezier curves • Example: hypocycloids • Exercises
10.2 Efficient structures • 386
Multi-objects • GraphicsComplex • Numeric vs. symbolic expressions • Exercises
10.3 Sound • 396
The sound of mathematics ■ Sound primitives and direaives ■ Exercises
10.4 Examples and applications • 402
Spacefilling plots ■ Plotting lines in space ■ Simple closed paths ■ Points in a polygon ■ Visualizing standard
deviations ■ Root plotting ■ Trend plots ■ Brownian music ■ Exercises
11 Dynamic expressions
II.I Manipulating expressions • 449
Control objects ■ Control wrapper ■ Viewers ■ Animating the hypog'cloid ■ Visualizing logical operators ■
Exercises
11.2 The structure of dynamic expressions • 470
Dynamic ■ DynamicModule ■ Dynamic tips ■ Exercises
11.3 Examples and applications • 481
Creating interfaces for visualizing data ■ File openers • Dynamic random walks • Apollonius' circle • Exercises
12 Optimizing Mathematica programs
12.1 Measuring efficiency • 494
Evaluation time • Memory stoi'age
12.2 Efficient programs • 496
Low-level vs. high-level functions ■ Pattern matching • Reducing size of computation • Symbolic vs. numeric
computation ■ Listabili^ • Pure functions • Packed arrays ■ Exercises
12.3 Parallel processing • 515
Basic examples • Distributing definitions across subkemels • Profiling • Exercises
12.4 Compiling • 523
Compile • Compiling to C • Exercises
13 Applications and packages
13.1 Random walk application • 534
Lattice walks ■ Off-lattice walks ■ RandomWalk ■ Error and usage messages ■ Visualization • Animation •
Exercises
13.2 Overview of packages -555
Working with packages • Package location
13.3 Contexts • 558
13.4 Creating packages • 563
Package framework • Creating and installing the package ■ RandomWalks package • Running the package •
Exercises

There are no comments on this title.

to post a comment.
SIKKIM UNIVERSITY
University Portal | Contact Librarian | Library Portal