A Modern Introduction to Probability and Statistics: Understanding why and How

By: Dekking, F.MContributor(s): Kraaikamp, C | Lopuhaa, H.P | Meester, L.EMaterial type: TextTextPublication details: London: Springer, 2005Description: xv, 487pISBN: 9781849969529DDC classification: 519.2
Contents:
Why probability and statistics?.- Outcomes, events, and probability.- Conditional probability and independence.- Discrete random variables.- Continuous random variables.- Simulation.- Expectation and variance.- Computations with random variables.- Joint distributions and independence.- Covariance and correlation.- More computations with more random variables.- The Poisson process.- The law of large numbers.- The central limit theorem.- Exploratory data analysis: graphical summaries.- Exploratory data analysis: numerical summaries.- Basic statistical models.- The bootstrap.- Unbiased estimators.- Efficiency and mean squared error.- Maximum likelihood.- The method of least squares.- Confidence intervals for the mean.- More on confidence intervals.- Testing hypotheses: essentials.- Testing hypotheses: elaboration.- The t-test.- Comparing two samples.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Date due Barcode Item holds
General Books General Books Central Library, Sikkim University
General Book Section
519.2 DEK/M (Browse shelf(Opens below)) Available 050585
Total holds: 0

Why probability and statistics?.- Outcomes, events, and probability.- Conditional probability and independence.- Discrete random variables.- Continuous random variables.- Simulation.- Expectation and variance.- Computations with random variables.- Joint distributions and independence.- Covariance and correlation.- More computations with more random variables.- The Poisson process.- The law of large numbers.- The central limit theorem.- Exploratory data analysis: graphical summaries.- Exploratory data analysis: numerical summaries.- Basic statistical models.- The bootstrap.- Unbiased estimators.- Efficiency and mean squared error.- Maximum likelihood.- The method of least squares.- Confidence intervals for the mean.- More on confidence intervals.- Testing hypotheses: essentials.- Testing hypotheses: elaboration.- The t-test.- Comparing two samples.

There are no comments on this title.

to post a comment.
SIKKIM UNIVERSITY
University Portal | Contact Librarian | Library Portal

Powered by Koha