Comprehensive biotechnology Vol. 5/ principles and practices in industry agriculture medicine and the environment
Moo-Young,Murray
- Amsterdam: Elsevier, 2011.
- 690
5.01. Introduction
5.02. Functional Biomaterials
Glossary
5.02.1. Introduction
5.02.2. Current Use of Materials in Medicine
5.02.3. Functionality in Biomaterials
5.02.4. Conclusions
5.03. Biomaterials/Cryogels
Glossary
5.03.1. Introduction
5.03.2. Production of Cryogels in Semi-Frozen Systems
5.03.3. Cryogel Characterization
5.03.4. Cryogel Properties
5.03.5. Composite Cryogel Materials: Inherent Features and Applications
5.03.6. Cryogels in Biomedicine and Biotechnology
5.04. Biomaterials
Glossary
5.04.1. Introduction
5.04.2. Principle of Electrospinning
5.04.3. Electrospun Biomaterials: A Wide Range of Possibilities
5.04.4. Applications of Electrospun Biomaterials
5.04.5. Biocompatibility of Electrospun Biomaterials
5.04.6. Electrospun Biomaterials for 3D Tissue Regeneration
5.04.7. Current Challenges with Electrospun Biomaterials
5.04.8. Conclusion
5.05. Mesoscale Engineering of Collagen as a Functional Biomaterial
Glossary
Acknowledgment
5.05.1. Introduction
5.05.2. Two Application Streams for Engineered Tissues
5.05.3. Which Cell Support Materials to Use: Indirect and Direct TE?
5.05.4. Interstitial Cell Seeding: Cell-Matrix Embedding from the Start
5.05.5. Structure of Collagen – A Raw Material for Weavers?
5.05.6. Collagen Materials: Engineering the Basics
5.05.7. Building Blocks
5.05.8. Antigenicity
5.05.9. Collagen Purity (and Antigenicity)
5.05.10. Bottom-Up Collagen Engineering, Where Is the Bottom – Amino Acids or Tropocollagen?
5.05.11. Conclusion
5.06. Biomaterials
Glossary
5.06.1. Introduction
5.06.2. Temperature-Responsive Intelligent Surfaces for Chromatographic Separation
5.06.3. Temperature-Responsive Intelligent Surfaces for Cell Culture
5.07. Surface Modification to Improve Biocompatibility
Glossary
5.07.1. Introduction
5.07.2. Surface Events, Interactions, and Material Characteristics
5.07.3. Surface Modification
5.07.4. Future
5.07.5. Conclusions
5.08. Cryopreservation
Glossary
Acknowledgments
5.08.1. Introduction
5.08.2. Cryopreservation Methodology
5.08.3. Natural Tissue Cryopreservation
5.08.4. Engineered Tissue Cryopreservation
5.08.5. Future Challenges
5.09. The Artificial Organ
Glossary
Acknowledgments
5.09.1. Introduction
5.09.2. Materials of Encapsulation
5.09.3. Properties of the Microcapsules
5.09.4. Applications of Encapsulated Cells
5.09.5. Conclusions and Future Considerations
5.10. Isolation of Mesenchymal Stem Cells from Bone Marrow Aspirate
Glossary
5.10.1. The Cellular Composition of Bone Marrow
5.10.2. Why Isolate MSC Populations?
5.10.3. Separation Techniques
5.10.4. Conclusions
5.11. Nanoimprint Lithography and Its Application in Tissue Engineering and Biosensing
Glossary
5.11.1. Introduction
5.11.2. Biosensing Applications of NIL
5.11.3. Application of NIL in Tissue Engineering
5.11.4. Appendix: Additional References
5.12. Microfluidic Technology and Its Biological Applications
Glossary
5.12.1. Introduction
5.12.2. Microfluidic Technology
5.12.3. Basic Components in Microfluidic Systems
5.12.4. Biological Applications
5.12.5. Concluding Remarks
5.13. Multifunctional Biosensor Development and Manufacture
Glossary
5.13.1. Introduction
5.13.2. Biomolecule Immobilization
5.13.3. Transduction Technologies
5.13.4. Potentiometric Transduction
5.13.5. Optical Transduction
5.13.6. Nanowire Arrays
5.13.7. Micromechanical
5.13.8. Recent Developments
5.13.9. Conclusions
5.14. Treating Intracranial Aneurysms – A Review of Existing and Emerging Methods
Glossary
5.14.1. Introduction
5.14.2. Existing Options for Treating Intracranial Aneurysms
5.14.3. Cerebral Stents for Direct Treatment of Intracranial Aneurysms
5.14.4. Conclusions
5.15. RNA Interference (RNAi) Technology
Glossary
5.15.1. Introduction
5.15.2. The Discovery of the Phenomena
5.15.3. The Mechanism of RNAi
5.15.4. The Discovery of miRNA Pathway and Functions of miRNA
5.15.5. The Generation of siRNA
5.15.6. The Assessment of siRNA Specificity and Off-Target Effects
5.15.7. The Progress of siRNA Drug Development
5.15.8. Conclusion Remarks
5.16. Rheology and Its Applications in Biotechnology
Glossary
5.16.1. Introduction
5.16.2. Shear Rheometry
5.16.3. Material Rheology
5.16.4. Other Rheological Considerations
5.16.5. Applications
5.16.6. Conclusion
5.17. Biological Fluid Mechanics
Glossary
Acknowledgment
5.17.1. Introduction
5.17.2. Vascular Diseases
5.17.3. Computational Biofluid Techniques
5.17.4. Evolving to Multiscale, Multiphysics Models
5.17.5. Epilogue
5.18. Mechanobiology of Bone
Glossary
5.18.1. Introduction
5.18.2. Fundamental Cell Mechanics
5.18.3. A Case Study of Mechanobiology: Bone
5.18.4. Bone Anatomy
5.18.5. The Osteocyte
5.18.6. Basic Mechanics of Solid Materials
5.18.7. A Top-Down Approach to Bone Mechanosensation: What Happens to a Bone When You Take a Step?
5.18.8. The Effect of Fluid Flow on the Osteocyte
5.18.9. Nonmechanical Fluid Flow Effects on the Osteocyte
5.18.10. Intracellular Signaling Downstream of Mechanical Deformation
5.18.11. Osteocyte Mechanotransduction Guides Bone Remodeling
5.18.12. How BMUs Remodel Bone
5.18.13. Outcome of Bone Remodeling
5.18.14. Biomedical Applications
5.18.15. Summary
5.19. Biofluids | Microcirculation
Glossary
5.19.1. Introduction
5.19.2. Interaction between Blood Cells and the Capillary Wall
5.19.3. Transcapillary Exchange of Fluid and Solute
5.19.4. Transport of HA across the Synovial Lining of Joint Cavities
5.19.5. Summary and Future Perspective
5.20. Emerging Trends in Tissue Engineering
Glossary
Acknowledgment
5.20.1. Introduction
5.20.2. Tissue-Engineering Strategies
5.20.3. Microscale Technologies
5.20.4. Bioreactors
5.20.5. Translation into Clinical Applications
5.20.6. Cell Sourcing
5.20.7. Future Directions
5.20.8. Conclusion
5.21. Cartilage Tissue Engineering Using Embryonic Stem Cells
Glossary
5.21.1. Introduction and Scope
5.21.2. OA Pathophysiology
5.21.3. Current Therapeutic Strategies for Cartilage Defects
5.21.4. Cartilage Biology and Chondrogenesis
5.21.5. Stem Cells
5.21.6. Cartilage Tissue Engineering Using ESCs
5.21.7. Conclusions
5.22. Tissue Engineering
Glossary
Acknowledgments
5.22.1. Introduction and Overview
5.22.2. Clinical Need
5.22.3. Skeletal Stem Cells – Identification, Expansion, and Differentiation
5.22.4. Growth Factors
5.22.5. Matrices for Bone Regeneration
5.22.6. Interactive Role of Vasculature in Skeletal Regeneration
5.22.7. In vivo Models of Skeletal Regeneration
5.22.8. Clinical Translation
5.22.9. Summary
5.23. Tendon Tissue Engineering
Glossary
5.23.1. Introduction
5.23.2. Rotator Cuff Anatomy
5.23.3. Etiology of Tears
5.23.4. Reduced Tendon Healing
5.23.5. Tissue-Engineering Approach
5.23.6. What Are Stem Cells?
5.23.7. Stem Cell Identification
5.23.8. Potential Uses in Other Fields
5.23.9. Application to Tendon
5.23.10. Rotator Cuff Tendon Application
5.23.11. Which Procedure for Which Patients?
5.23.12. Determining Ideal Conditions
5.23.13. Potential Problems
5.23.14. Conclusions
5.23.15. Biological Agents
5.23.16. Scaffolds
5.23.17. Conclusions and the Future
5.24. Complexity in Modeling of Cartilage Tissue Engineering
Glossary
5.24.1. Introduction
5.24.2. Nutrients and Wastes
5.24.3. Cell Proliferation/Death
5.24.4. Matrix Deposition
5.24.5. Permeability/Diffusivity
5.24.6. Mechanical Property
5.24.7. Different Culture Systems
5.24.8. In Vivo Tissue Engineering
5.24.9. Discussion
5.25. Tissue Engineering of Fibrocartilaginous Tissues
Glossary
Acknowledgments
5.25.1. Introduction
5.25.2. Anatomy, Structure, and Function
5.25.3. Composition of the Extracellular Matrix and Its Organization
5.25.4. Pathologies and Current Treatments of the Fibrocartilages
5.25.5. Tissue Engineering
5.25.6. Conclusion
5.26. Tissue Engineering of Normal and Abnormal Bone Marrow
Glossary
5.26.1. Introduction
5.26.2. BM Structure
5.26.3. Modeling Artificial Niches
5.26.4. Perturbations in the BM Microenvironment
5.26.5. Conclusion
5.27. Evaluation of Silk as a Scaffold for Musculoskeletal Regeneration – the Path from the Laboratory to Clinical Trials
Glossary
Acknowledgments
5.27.1. Introduction
5.27.2. Common Types of Silk Scaffolds
5.27.3. A Review of Studies of Silk Scaffolds for Musculoskeletal Tissue Engineering
5.27.4. An Evaluation of Silk as a Scaffold for Musculoskeletal Repair – in the Context of Medical Device Regulations
5.27.5. Summary
5.28. Tissue-Engineering Technology for Tissue Repair and Regeneration
Glossary
Acknowledgments
5.28.1. Introduction
5.28.2. Basic Principles of Tissue engineering
5.28.3. Tissue Generation with Tissue-Engineering Technology
5.28.4. Application of Engineered Tissue for Tissue Repair
5.28.5. Clinical Application of Engineered Tissue Repair
5.28.6. Development of Engineered Tissue Products
5.28.7. Summary
5.29. Induced Pluripotent Stem Cells and Their Application to Personalized Therapy
Glossary
5.29.1. Introduction
5.29.2. hiPSCs Are Similar to, but Not Identical to, hESCs