Remote sensing and atmospheric ozone: human activities versus natural variability/ Arthur P. Cracknell

By: Cracknell ,Arthur PMaterial type: TextTextPublication details: Heidelberg: Springer-Verlag, c2012Description: xli, 662 pISBN: 9783642103339DDC classification: 621.3678
Contents:
1 Tbe traditional measurement of ozone concentration in the atmosphere. . 1 1.1 Introduction 1 1.1.1 Observations of the total ozone column 4 1.2 Ground-based instrumentation for TOC observations 5 1.2.1 The Dobson ozone spectrophotometer 7 1.2.2 Intercomparison of Dobson spectrophotometers 10 1.2.3 Interference of SO2 and NO2 in Dobson TOC measure ments 19 1.2.4 Influence of stray light on Dobson TOC measurements . 24 1.3 Brewer Spectrophotometer 34 1.4 Filter ozonometers M-83/124/134 37 1.5 Secondary ground-based instrumentation for TOC observations . 39 1.5.1 System for Analysis of Observation at Zenith (SAOZ) . . 42 1.5.2 MICROTOPS II (Total Ozone Portable Spectrometer) . 42 1.5.3 High-Resolution Visible/Ultraviolet Absorption Spectroscopy 1.5.4 Fourier transform spectrometer (FTS) 43 1.5.5 System for the Monitoring of Stratospheric Compounds (SYMOCS) 46 1.5.6 Star Pointing Spectrometer (SPS) 46 1.5.7 MDR-23 (a Russian "commercial device) 46 vi Contents 1.5.8 Scanning spcc from clcr (EVA) 47 1.5.9 Solar IR spcclroradiomctcr 47 1.5.10 Ground-based UV radiometer (GUV) 47 1.5.1 1 Spectrometer Ozonometer PION 48 1.5.12 spectrometer for Atmospheric TRAcers Monitoring (SPATRAM) 48 1.6 Observations of ozone vertical profile (OVP) 50 1.6.1 Primary ground-based instrumentation for OVP observa tions 50 1.6.2 Dobson Umkehr measurements and inversion 51 1.6.3 Brewer Umkehr measurements 54 1.6.4 Secondary ground-based instrumentation for OVP obser observations 55 1.6.5 Lidar 55 1.6.6 Microwave radiometry 56 1.6.7 Ground-based Millimeter wave Ozone Spectrometer (GROMOS) 57 1.6.8 Stratospheric Sounding by Infrared Heterodyne Spectroscopy (SIRHS) 57 1.6.9 Ground-based microwave radiometers 58 1.6.10 Ground-based infrared solar spectroscopy 59 1.6.1 1 Stratospheric Ozone Monitoring Radiometer (SOMORA) 59 1.7 Airborne instrumentation for OVP observations 61 1.7.1 Electrochemical ozonesondes 01 1.7.2 Optical ozonesondes 04 1.7.3 Other balloon instrumentation 07 1.7.4 Aircraft instrumentation 71 1.8 Surface ozone measurements 77 1.8.1 Chemiluminescence method 77 1.8.2 Electrochemical potassium iodide method 77 1.8.3 UV absorption method 77 Satellite systems for studies of atmospheric ozone 79 2.1 Satellite remote sounding of TOC 82 2.2 Direct absorption measuring instruments ' ' " 2.2.1 TIROS Operational Vertical Sounder (TOVS); GOES . . 83 2.2.2 Laser Heterodyne Spectrometer (LHS)/Tunable Diode LHS (TDLHS) 2.2.3 OZON-MIR 2.3 Indirect absorption measuring instruments 86 2.3.1 Total Ozone Mapping Spectrometer (TOMS) 86 2.3.2 Ozone Monitoring Instrument (OMI) 90 2.3.3 Advanced Earth Observing Satellite (ADEOS I93 23.4 Solar Backscattered Ultraviolet Radiometer (SBUV) . . . 93 2.3.5 Global Ozone Monitoring Experiment (GOME) 96 2.3.6 ESA ENVISAT. GOMOS 98 2.3.7 The Ozone Mapping and Profiler Suite (OMPS) and the NPOESS 99 2.3.8 Ozone Dynamics Ultraviolet Spectrometer (ODUS) . . . 101 2.3.9 Ozone Layer Monitoring Experiment (OLME) 101 2.3.10 Interferometric Monitor for Greenhouse Gases (IMG) . 101 2.3.11 Infrared Atmospheric Sounding Interferometer 102 2.4 Observed variability in total ozone column 102 2.4.1 Latitudinal variation of TOC 102 2.4.2 Longitudinal variation of TOC 106 2.5 Satellite instrumentation for OVP observations 106 2.5.1 Direct-absorption measuring instruments 107 2.5.2 Scattering-measuring instruments 116 2.5.3 Emission-measuring instruments 118 2.5.4 Summary of ozone-monitoring satellites 130 2.6 Observed variability in vertical ozone distribution 130 2.6.1 EASOE 141 2.6.2 SESAME 142 2.6.3 THESEO 142 2.6.4 SOLVE 142 2.6.5 ORACLE-O3 143 2.6.6 SC0UT-03 144 2.6.7 Match 144 2.6.8 ARC IONS 145 Intercomparisons between various atmospheric ozone datasets 149 3.1 Introduction 149 3.2 Total ozone measurements over Athens: intercomparison between Dobson, TOMS (version 7), SBUY, and other satellite measure ments 152 3.3 Geophysical validation of MIPAS-ENVISAT operational ozone data 161 3.3.1 Introduction to MIPAS 161 3.3.2 MIPAS ozone data 163 3.3.3 Comparison of MIPAS data with WMO/GAW ground- based measurements 164 3.4 Comparison of MIPAS data with stratospheric balloon and aircraft measurements 190 3.4.1 MIPAS-B2 190 3.4.2 FIRS-2 and IBEX 193 3.4.3 SPIRALE 198 3.4.4 MIPAS-STR, SAFIRE-A, and FOZAN on board the M-55 Geophysica aircraft 200 3.4.5 ASUR 207 Contents vn viii Contents 3.5 Comparison with satellite measurements 208 3.5.1 Comparison of MIPAS data with SAGE II profiles . 211 3.5.2 Comparison with POAM III O3 profiles 213 3.5.3 Comparison with Odin-SMR O3 profiles 216 3.5.4 Comparison with ACE-FTS O3 profiles 220 3.5.5 Comparison with HALO O3 profiles 223 3.5.6 Comparison with GOME O3 profiles 229 3.5.7 Comparison with SCI AM ACHY and GOMOS 231 3.6 Comparison of MIPAS data with ECMWF assimilated fields. . . 234 3.7 Summary of MIPAS comparisons — 3 8 Other intercomparisons between various ozone-monitoring systems 3 8 I TOMS GOME, GOMOS, and SCIAMACHY data . . . -45 3.8.2 MLS data ; 3.8.3 SAGE data 3.8.4 TES data 3.8.5 ACE and lASI data 3.8.6 Ozonesonde intercomparisons 4 The dynamics of atmospheric ozone 4.1 Total ozone trends ~ 4.2 Ozone vertical profile variability. • • • • • ~ _ 4.3 General features of ozone global distribution - 4.3.1 Stratosphere troposphere exchange 4.3.2 Low-ozone pockets • 4.4 The non-linear nature of ozone variability; detrended fluctuation analysis (DFA) ' ' 4.4.1 Long-memory processes in global ozone and temperature variations " 4.4.2 Long-term memory dynamics of total ozone content . . . 4.4.3 Scaling behavior of the global tropopause . • • 4.4.4 Scaling properties of air pollution at the surface; surface ozone (SOZ) 4.5 Impacts of the solar eclipse of March 29. 2006 on surface ozone and related air pollutants 4.6 Long-term coupling between TOC and tropopause properties . . .^27 4.6.1 Occurrence frequency of tropopause height . . _ _ _ • ' ' 4.6.2 Association between tropopause properties and TO 4.6.3 The tropopause; summary 5 The Montreal Protocol 5 1 Introduction , f'. 5.2 The proposition by Molina and Rowland of human releases of CFCs being responsible for ozone depletion ' 5.3 The science from 1974 to 1985. . 339 5.4 The Ozone Hole 351 5.5 The role of remote sensing in the lead-up to the Montreal Protocol 358 5.6 The NOZE and AAGE expeditions 358 5.7 Theories of the Ozone Hole 363 5.8 Diplomacy, 1974-1989; formulation and ratification of the Montreal Protocol 366 5.9 Reasons for the success in reaching international agreement in Montreal 368 5.10 Ratification of the Montreal Protocol 372 6 The study of atmospheric ozone since 1987 379 6.1 Introduction 379 6.2 The reduction of ozone-destroying chemicals in the atmosphere 6.2.1 Ozone depletion potential (ODP) 6.2.2 Equivalent Effective Stratospheric Chlorine (EESC). . . 6.3 Ground-based and ozonesonde data on ozone depletion 6.4 Piecewise linear trends in ozone depletion 6.5 Recovery of the ozone layer; the polar regions 6.5.1 Sudden stratospheric warmings 6.5.2 Observation of sudden stratospheric warmings detected in deep underground muon data 417 6.5.3 The role of the diffusion of gases in ice or an amorphous binary mixture in the polar stratosphere and the upper troposphere 420 6.5.4 Experimental studies of the Antarctic ozone hole and ozone loss in the Arctic 425 6.5.5 Antarctic ozone hole predictability; use of natural time series 441 6.6 Long-term monitoring of the ozone layer 448 6.6.1 Measurement of TOG and the OVP 452 6.6.2 The use of models to predict ozone concentration . . . . 454 6.6.3 Ozonesonde networks 469 6.6.4 Trends in TOG and tropopause properties 474 6.7 Scientific assessment of ozone depletion 2010 478 7 Atmospheric ozone and climate 485 7.1 Introduction 485 7.2 Radiative-forcing calculations 492 7.2.1 Estimates of changes in RF from pre-industrial times to the present 492 7.2.2 Detailed studies of changes in RF in recent decades . . . 497 7.2.3 Contribution of the transport sector 515 7.3 Ozone-induced climatic impacts 517 7.3.1 The health impacts of changes in ozone concentration . . 543 7.4 Conclusions on iropo-stralosphcric variabiiily 544 7.4.1 Stratospheric ozone dynamics and its determining factors 545 7.4.2 Tropospheric processes 546 7.5 New climate research aspects deduced from global ozone dynamics research and remote sensing 547 7.5.1 Climate modeling and atmospheric ozone 547 7.5.2 Role of phase transitions in climate system dynamics. . . 549 7.5.3 Nambu dynamics and ozone climate modeling 550 7.5.4 Dissipation-induced instabilities in ozone and climate fields • 7 5 5 Deterministic, chaotic, or stochastic ozone climate time series 7.6 WMO/UNEP Scientific Assessment 2010 554
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 5.0 (1 votes)
Holdings
Item type Current library Call number Status Date due Barcode Item holds
General Books General Books Central Library, Sikkim University
General Book Section
621.3678 CRA/R (Browse shelf(Opens below)) Available P32127
Total holds: 0


1 Tbe traditional measurement of ozone concentration in the atmosphere. . 1
1.1 Introduction 1
1.1.1 Observations of the total ozone column 4
1.2 Ground-based instrumentation for TOC observations 5
1.2.1 The Dobson ozone spectrophotometer 7
1.2.2 Intercomparison of Dobson spectrophotometers 10
1.2.3 Interference of SO2 and NO2 in Dobson TOC measure
ments 19
1.2.4 Influence of stray light on Dobson TOC measurements . 24
1.3 Brewer Spectrophotometer 34
1.4 Filter ozonometers M-83/124/134 37
1.5 Secondary ground-based instrumentation for TOC observations . 39
1.5.1 System for Analysis of Observation at Zenith (SAOZ) . . 42
1.5.2 MICROTOPS II (Total Ozone Portable Spectrometer) . 42
1.5.3 High-Resolution Visible/Ultraviolet Absorption Spectroscopy
1.5.4 Fourier transform spectrometer (FTS) 43
1.5.5 System for the Monitoring of Stratospheric Compounds
(SYMOCS) 46
1.5.6 Star Pointing Spectrometer (SPS) 46
1.5.7 MDR-23 (a Russian "commercial device) 46
vi Contents
1.5.8 Scanning spcc from clcr (EVA) 47
1.5.9 Solar IR spcclroradiomctcr 47
1.5.10 Ground-based UV radiometer (GUV) 47
1.5.1 1 Spectrometer Ozonometer PION 48
1.5.12 spectrometer for Atmospheric TRAcers Monitoring
(SPATRAM) 48
1.6 Observations of ozone vertical profile (OVP) 50
1.6.1 Primary ground-based instrumentation for OVP observa
tions 50
1.6.2 Dobson Umkehr measurements and inversion 51
1.6.3 Brewer Umkehr measurements 54
1.6.4 Secondary ground-based instrumentation for OVP obser
observations 55
1.6.5 Lidar 55
1.6.6 Microwave radiometry 56
1.6.7 Ground-based Millimeter wave Ozone Spectrometer
(GROMOS) 57
1.6.8 Stratospheric Sounding by Infrared Heterodyne
Spectroscopy (SIRHS) 57
1.6.9 Ground-based microwave radiometers 58
1.6.10 Ground-based infrared solar spectroscopy 59
1.6.1 1 Stratospheric Ozone Monitoring Radiometer (SOMORA) 59
1.7 Airborne instrumentation for OVP observations 61
1.7.1 Electrochemical ozonesondes 01
1.7.2 Optical ozonesondes 04
1.7.3 Other balloon instrumentation 07
1.7.4 Aircraft instrumentation 71
1.8 Surface ozone measurements 77
1.8.1 Chemiluminescence method 77
1.8.2 Electrochemical potassium iodide method 77
1.8.3 UV absorption method 77
Satellite systems for studies of atmospheric ozone 79
2.1 Satellite remote sounding of TOC 82
2.2 Direct absorption measuring instruments ' ' "
2.2.1 TIROS Operational Vertical Sounder (TOVS); GOES . . 83
2.2.2 Laser Heterodyne Spectrometer (LHS)/Tunable Diode
LHS (TDLHS)
2.2.3 OZON-MIR
2.3 Indirect absorption measuring instruments 86
2.3.1 Total Ozone Mapping Spectrometer (TOMS) 86
2.3.2 Ozone Monitoring Instrument (OMI) 90
2.3.3 Advanced Earth Observing Satellite (ADEOS I93
23.4 Solar Backscattered Ultraviolet Radiometer (SBUV) . . . 93
2.3.5 Global Ozone Monitoring Experiment (GOME) 96
2.3.6 ESA ENVISAT. GOMOS 98
2.3.7 The Ozone Mapping and Profiler Suite (OMPS) and the
NPOESS 99
2.3.8 Ozone Dynamics Ultraviolet Spectrometer (ODUS) . . . 101
2.3.9 Ozone Layer Monitoring Experiment (OLME) 101
2.3.10 Interferometric Monitor for Greenhouse Gases (IMG) . 101
2.3.11 Infrared Atmospheric Sounding Interferometer 102
2.4 Observed variability in total ozone column 102
2.4.1 Latitudinal variation of TOC 102
2.4.2 Longitudinal variation of TOC 106
2.5 Satellite instrumentation for OVP observations 106
2.5.1 Direct-absorption measuring instruments 107
2.5.2 Scattering-measuring instruments 116
2.5.3 Emission-measuring instruments 118
2.5.4 Summary of ozone-monitoring satellites 130
2.6 Observed variability in vertical ozone distribution 130
2.6.1 EASOE 141
2.6.2 SESAME 142
2.6.3 THESEO 142
2.6.4 SOLVE 142
2.6.5 ORACLE-O3 143
2.6.6 SC0UT-03 144
2.6.7 Match 144
2.6.8 ARC IONS 145
Intercomparisons between various atmospheric ozone datasets 149
3.1 Introduction 149
3.2 Total ozone measurements over Athens: intercomparison between
Dobson, TOMS (version 7), SBUY, and other satellite measure
ments 152
3.3 Geophysical validation of MIPAS-ENVISAT operational ozone
data 161
3.3.1 Introduction to MIPAS 161
3.3.2 MIPAS ozone data 163
3.3.3 Comparison of MIPAS data with WMO/GAW ground-
based measurements 164
3.4 Comparison of MIPAS data with stratospheric balloon and
aircraft measurements 190
3.4.1 MIPAS-B2 190
3.4.2 FIRS-2 and IBEX 193
3.4.3 SPIRALE 198
3.4.4 MIPAS-STR, SAFIRE-A, and FOZAN on board the
M-55 Geophysica aircraft 200
3.4.5 ASUR 207
Contents vn
viii Contents
3.5 Comparison with satellite measurements 208
3.5.1 Comparison of MIPAS data with SAGE II profiles . 211
3.5.2 Comparison with POAM III O3 profiles 213
3.5.3 Comparison with Odin-SMR O3 profiles 216
3.5.4 Comparison with ACE-FTS O3 profiles 220
3.5.5 Comparison with HALO O3 profiles 223
3.5.6 Comparison with GOME O3 profiles 229
3.5.7 Comparison with SCI AM ACHY and GOMOS 231
3.6 Comparison of MIPAS data with ECMWF assimilated fields. . . 234
3.7 Summary of MIPAS comparisons —
3 8 Other intercomparisons between various ozone-monitoring
systems
3 8 I TOMS GOME, GOMOS, and SCIAMACHY data . . . -45
3.8.2 MLS data ;
3.8.3 SAGE data
3.8.4 TES data
3.8.5 ACE and lASI data
3.8.6 Ozonesonde intercomparisons

4 The dynamics of atmospheric ozone
4.1 Total ozone trends ~
4.2 Ozone vertical profile variability. • • • • • ~ _
4.3 General features of ozone global distribution -
4.3.1 Stratosphere troposphere exchange
4.3.2 Low-ozone pockets •
4.4 The non-linear nature of ozone variability; detrended fluctuation
analysis (DFA) ' '
4.4.1 Long-memory processes in global ozone and temperature
variations "
4.4.2 Long-term memory dynamics of total ozone content . . .
4.4.3 Scaling behavior of the global tropopause . • •
4.4.4 Scaling properties of air pollution at the surface; surface
ozone (SOZ)
4.5 Impacts of the solar eclipse of March 29. 2006 on surface ozone
and related air pollutants
4.6 Long-term coupling between TOC and tropopause properties . . .^27
4.6.1 Occurrence frequency of tropopause height . . _ _ _ • ' '
4.6.2 Association between tropopause properties and TO
4.6.3 The tropopause; summary
5 The Montreal Protocol
5 1 Introduction , f'.
5.2 The proposition by Molina and Rowland of human releases of
CFCs being responsible for ozone depletion '
5.3 The science from 1974 to 1985. .
339
5.4 The Ozone Hole 351
5.5 The role of remote sensing in the lead-up to the Montreal
Protocol 358
5.6 The NOZE and AAGE expeditions 358
5.7 Theories of the Ozone Hole 363
5.8 Diplomacy, 1974-1989; formulation and ratification of the
Montreal Protocol 366
5.9 Reasons for the success in reaching international agreement in
Montreal 368
5.10 Ratification of the Montreal Protocol 372
6 The study of atmospheric ozone since 1987 379
6.1 Introduction 379
6.2 The reduction of ozone-destroying chemicals in the atmosphere
6.2.1 Ozone depletion potential (ODP)
6.2.2 Equivalent Effective Stratospheric Chlorine (EESC). . .
6.3 Ground-based and ozonesonde data on ozone depletion
6.4 Piecewise linear trends in ozone depletion
6.5 Recovery of the ozone layer; the polar regions
6.5.1 Sudden stratospheric warmings
6.5.2 Observation of sudden stratospheric warmings detected in
deep underground muon data 417
6.5.3 The role of the diffusion of gases in ice or an amorphous
binary mixture in the polar stratosphere and the upper
troposphere 420
6.5.4 Experimental studies of the Antarctic ozone hole and
ozone loss in the Arctic 425
6.5.5 Antarctic ozone hole predictability; use of natural time
series 441
6.6 Long-term monitoring of the ozone layer 448
6.6.1 Measurement of TOG and the OVP 452
6.6.2 The use of models to predict ozone concentration . . . . 454
6.6.3 Ozonesonde networks 469
6.6.4 Trends in TOG and tropopause properties 474
6.7 Scientific assessment of ozone depletion 2010 478
7 Atmospheric ozone and climate 485
7.1 Introduction 485
7.2 Radiative-forcing calculations 492
7.2.1 Estimates of changes in RF from pre-industrial times to
the present 492
7.2.2 Detailed studies of changes in RF in recent decades . . . 497
7.2.3 Contribution of the transport sector 515
7.3 Ozone-induced climatic impacts 517
7.3.1 The health impacts of changes in ozone concentration . . 543
7.4 Conclusions on iropo-stralosphcric variabiiily 544
7.4.1 Stratospheric ozone dynamics and its determining factors 545
7.4.2 Tropospheric processes 546
7.5 New climate research aspects deduced from global ozone
dynamics research and remote sensing 547
7.5.1 Climate modeling and atmospheric ozone 547
7.5.2 Role of phase transitions in climate system dynamics. . . 549
7.5.3 Nambu dynamics and ozone climate modeling 550
7.5.4 Dissipation-induced instabilities in ozone and climate
fields •
7 5 5 Deterministic, chaotic, or stochastic ozone climate time
series
7.6 WMO/UNEP Scientific Assessment 2010 554

There are no comments on this title.

to post a comment.
SIKKIM UNIVERSITY
University Portal | Contact Librarian | Library Portal

Powered by Koha