Liquid sample introduction in ICP spectrometry/ a practical guide Todoli, Jose-Luis

Material type: TextTextPublication details: Amsterdam: Elsevier, 2008Edition: 1st edDescription: 289 pISBN: 9780444531421DDC classification: 539.60287
Contents:
Front Cover; Liquid Sample Introduction in ICP Spectrometry: A Practical Guide; Copyright Page; Preface; Table of Contents; Chapter 1. Introduction; Chapter 2. Specifications of a Sample Introduction System to be Used with an ICP; 2.1 Introduction; 2.2 Physical properties of a plasma; 2.3 Energy delivered by the plasma; 2.4 Carrier gas flow rate and droplet velocity; 2.5 Desolvation and vaporization; 2.6 Plasma loading; 2.7 Organic solvents; 2.8 Ideal aerosol; 2.9 Chemical resistance; 2.10 Other constraints in sample introduction systems; Chapter 3. Pneumatic Nebulizer Design. 3.1 Introduction3.2 Mechanisms involved in pneumatic aerosol generation; 3.2.1 Wave generation; 3.2.2 Wave growing and break-up; 3.2.3 Need for a supersonic gas velocity; 3.2.4 Main pneumatic nebulizer designs used in ICP spectrometry; 3.2.5 Sample delivery; 3.3 Pneumatic concentric nebulizers; 3.3.1 Principle; 3.3.2 Different designs; 3.3.3 Possibility of free liquid uptake rate; 3.3.4 Critical dimensions; 3.3.5 Renebulization; 3.3.6 Nebulizer tip blocking; 3.3.7 Aerosol drop characteristics; 3.3.7.1 Influence of the gas and delivery rates on drop size distribution. 3.3.7.2 Spatial distribution and velocity3.4 Cross-flow nebulizers; 3.5 High-solids nebulizers; 3.6 Parallel-path nebulizer; 3.6.1 Principle; 3.6.2 Critical dimensions; 3.7 Comparison of the different conventional pneumatic nebulizers; 3.8 Pneumatic micronebulizers; 3.8.1 High-Efficiency Nebulizer (HEN); 3.8.2 Microconcentric Nebulizer (MCN); 3.8.3 MicroMist nebulizer (MMN); 3.8.4 PFA micronebulizer (PFAN); 3.8.5 Demountable concentric micronebulizers; 3.8.6 High-efficiency cross-flow micronebulizer (HECFMN); 3.8.7 Parallel-Path Micronebulizer (PPMN); 3.8.8 Sonic-Spray Nebulizer (SSN). 3.8.9 Oscillating-Capillary Nebulizer (OCN)3.8.10 High-Solids MicroNebulizer (HSMN); 3.8.11 Direct-Injection Nebulizers; 3.8.11.1 Direct-Injection Nebulizer (DIN); 3.8.11.2 Direct-Injection High-Efficiency Nebulizer (DIHEN); 3.8.11.3 Vulkan Direct-Injection Nebulizer; 3.9 Comparison of micronebulizers; Chapter 4. Spray Chamber Design; 4.1 Introduction; 4.2 Aerosol transport phenomena; 4.2.1 Droplet evaporation; 4.2.2 Droplet coagulation; 4.2.3 Droplet impacts; 4.3 Different spray chambers designs; 4.3.1 Double-pass spray chamber; 4.3.2 Cyclonic type spray chamber. 4.3.3 Single-pass spray chambers4.4 Comparison of conventional spray chambers; 4.5 Low inner volume spray chambers; 4.5.1 Aerosol transport and signal production processes at low liquid flow rates; 4.5.2 Low inner volume spray chamber designs; 4.5.3 Tandem systems; 4.6 Conclusions on spray chambers; Chapter 5. Desolvation Systems; 5.1 Introduction; 5.2 Overview of the effect of the solvent in ICP-AES and ICP-MS; 5.3 Processes occurring inside a desolvation system; 5.3.1 Solvent evaporation; 5.3.2 Nucleation or recondensation; 5.4 Aerosol heating; 5.4.1 Indirect aerosol heating.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Date due Barcode Item holds
General Books General Books Central Library, Sikkim University
General Book Section
539.60287 TOD/L (Browse shelf(Opens below)) Available P31350
Total holds: 0

Front Cover; Liquid Sample Introduction in ICP Spectrometry: A Practical Guide; Copyright Page; Preface; Table of Contents; Chapter 1. Introduction; Chapter 2. Specifications of a Sample Introduction System to be Used with an ICP; 2.1 Introduction; 2.2 Physical properties of a plasma; 2.3 Energy delivered by the plasma; 2.4 Carrier gas flow rate and droplet velocity; 2.5 Desolvation and vaporization; 2.6 Plasma loading; 2.7 Organic solvents; 2.8 Ideal aerosol; 2.9 Chemical resistance; 2.10 Other constraints in sample introduction systems; Chapter 3. Pneumatic Nebulizer Design. 3.1 Introduction3.2 Mechanisms involved in pneumatic aerosol generation; 3.2.1 Wave generation; 3.2.2 Wave growing and break-up; 3.2.3 Need for a supersonic gas velocity; 3.2.4 Main pneumatic nebulizer designs used in ICP spectrometry; 3.2.5 Sample delivery; 3.3 Pneumatic concentric nebulizers; 3.3.1 Principle; 3.3.2 Different designs; 3.3.3 Possibility of free liquid uptake rate; 3.3.4 Critical dimensions; 3.3.5 Renebulization; 3.3.6 Nebulizer tip blocking; 3.3.7 Aerosol drop characteristics; 3.3.7.1 Influence of the gas and delivery rates on drop size distribution. 3.3.7.2 Spatial distribution and velocity3.4 Cross-flow nebulizers; 3.5 High-solids nebulizers; 3.6 Parallel-path nebulizer; 3.6.1 Principle; 3.6.2 Critical dimensions; 3.7 Comparison of the different conventional pneumatic nebulizers; 3.8 Pneumatic micronebulizers; 3.8.1 High-Efficiency Nebulizer (HEN); 3.8.2 Microconcentric Nebulizer (MCN); 3.8.3 MicroMist nebulizer (MMN); 3.8.4 PFA micronebulizer (PFAN); 3.8.5 Demountable concentric micronebulizers; 3.8.6 High-efficiency cross-flow micronebulizer (HECFMN); 3.8.7 Parallel-Path Micronebulizer (PPMN); 3.8.8 Sonic-Spray Nebulizer (SSN). 3.8.9 Oscillating-Capillary Nebulizer (OCN)3.8.10 High-Solids MicroNebulizer (HSMN); 3.8.11 Direct-Injection Nebulizers; 3.8.11.1 Direct-Injection Nebulizer (DIN); 3.8.11.2 Direct-Injection High-Efficiency Nebulizer (DIHEN); 3.8.11.3 Vulkan Direct-Injection Nebulizer; 3.9 Comparison of micronebulizers; Chapter 4. Spray Chamber Design; 4.1 Introduction; 4.2 Aerosol transport phenomena; 4.2.1 Droplet evaporation; 4.2.2 Droplet coagulation; 4.2.3 Droplet impacts; 4.3 Different spray chambers designs; 4.3.1 Double-pass spray chamber; 4.3.2 Cyclonic type spray chamber. 4.3.3 Single-pass spray chambers4.4 Comparison of conventional spray chambers; 4.5 Low inner volume spray chambers; 4.5.1 Aerosol transport and signal production processes at low liquid flow rates; 4.5.2 Low inner volume spray chamber designs; 4.5.3 Tandem systems; 4.6 Conclusions on spray chambers; Chapter 5. Desolvation Systems; 5.1 Introduction; 5.2 Overview of the effect of the solvent in ICP-AES and ICP-MS; 5.3 Processes occurring inside a desolvation system; 5.3.1 Solvent evaporation; 5.3.2 Nucleation or recondensation; 5.4 Aerosol heating; 5.4.1 Indirect aerosol heating.

There are no comments on this title.

to post a comment.
SIKKIM UNIVERSITY
University Portal | Contact Librarian | Library Portal

Powered by Koha