Stochastic approximation and recursive algorithms and applications/ Harold J. Kushner and G. George Yin

By: Kushner, Harold JContributor(s): Yin, G. GeorgeMaterial type: TextTextSeries: (Applications of Mathematics) ; 35Publication details: New York: Springer, 2003Edition: 2nd edDescription: xxii, 474 p. ; 25 cmISBN: 0387008942Subject(s): Recursive functions | Stochastic approximation | AlgorithmsDDC classification: 519.22
Contents:
Introduction 1 Review of Continuous Time Models 1.1 Martingales and Martingale Inequalities 1.2 Stochastic Integration 1.3 Stochastic Differential Equations: Diffusions 1.4 Reflected Diffusions 1.5 Processes with Jumps 2 Controlled Markov Chains 2.1 Recursive Equations for the Cost 2.2 Optimal Stopping Problems 2.3 Discounted Cost 2.4 Control to a Target Set and Contraction Mappings 2.5 Finite Time Control Problems 3 Dynamic Programming Equations 3.1 Functionals of Uncontrolled Processes 3.2 The Optimal Stopping Problem 3.3 Control Until a Target Set Is Reached 3.4 A Discounted Problem with a Target Set and Reflection 3.5 Average Cost Per Unit Time 4 Markov Chain Approximation Method: Introduction 4.1 Markov Chain Approximation 4.2 Continuous Time Interpolation 4.3 A Markov Chain Interpolation 4.4 A Random Walk Approximation 4.5 A Deterministic Discounted Problem 4.6 Deterministic Relaxed Controls 5 Construction of the Approximating Markov Chains 5.1 One Dimensional Examples 5.2 Numerical Simplifications 5.3 The General Finite Difference Method 5.4 A Direct Construction 5.5 Variable Grids 5.6 Jump Diffusion Processes 5.7 Reflecting Boundaries 5.8 Dynamic Programming Equations 5.9 Controlled and State Dependent Variance 6 Computational Methods for Controlled Markov Chains 6.1 The Problem Formulation 6.2 Classical Iterative Methods 6.3 Error Bounds 6.4 Accelerated Jacobi and Gauss-Seidel Methods 6.5 Domain Decomposition 6.6 Coarse Grid-Fine Grid Solutions 6.7 A Multigrid Method 6.8 Linear Programming 7 The Ergodic Cost Problem: Formulation and Algorithms 7.1 Formulation of the Control Problem 7.2 A Jacobi Type Iteration 7.3 Approximation in Policy Space 7.4 Numerical Methods 7.5 The Control Problem 7.6 The Interpolated Process 7.7 Computations 7.8 Boundary Costs and Controls 8 Heavy Traffic and Singular Control
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Date due Barcode Item holds
General Books General Books Central Library, Sikkim University
General Book Section
519.22 KUS/S (Browse shelf(Opens below)) Available P25276
Total holds: 0

Introduction
1 Review of Continuous Time Models
1.1 Martingales and Martingale Inequalities
1.2 Stochastic Integration
1.3 Stochastic Differential Equations: Diffusions
1.4 Reflected Diffusions
1.5 Processes with Jumps
2 Controlled Markov Chains
2.1 Recursive Equations for the Cost
2.2 Optimal Stopping Problems
2.3 Discounted Cost
2.4 Control to a Target Set and Contraction Mappings
2.5 Finite Time Control Problems
3 Dynamic Programming Equations
3.1 Functionals of Uncontrolled Processes
3.2 The Optimal Stopping Problem
3.3 Control Until a Target Set Is Reached
3.4 A Discounted Problem with a Target Set and Reflection
3.5 Average Cost Per Unit Time
4 Markov Chain Approximation Method: Introduction
4.1 Markov Chain Approximation
4.2 Continuous Time Interpolation
4.3 A Markov Chain Interpolation
4.4 A Random Walk Approximation
4.5 A Deterministic Discounted Problem
4.6 Deterministic Relaxed Controls
5 Construction of the Approximating Markov Chains
5.1 One Dimensional Examples
5.2 Numerical Simplifications
5.3 The General Finite Difference Method
5.4 A Direct Construction
5.5 Variable Grids
5.6 Jump Diffusion Processes
5.7 Reflecting Boundaries
5.8 Dynamic Programming Equations
5.9 Controlled and State Dependent Variance
6 Computational Methods for Controlled Markov Chains
6.1 The Problem Formulation
6.2 Classical Iterative Methods
6.3 Error Bounds
6.4 Accelerated Jacobi and Gauss-Seidel Methods
6.5 Domain Decomposition
6.6 Coarse Grid-Fine Grid Solutions
6.7 A Multigrid Method
6.8 Linear Programming
7 The Ergodic Cost Problem: Formulation and Algorithms
7.1 Formulation of the Control Problem
7.2 A Jacobi Type Iteration
7.3 Approximation in Policy Space
7.4 Numerical Methods
7.5 The Control Problem
7.6 The Interpolated Process
7.7 Computations
7.8 Boundary Costs and Controls
8 Heavy Traffic and Singular Control

There are no comments on this title.

to post a comment.
SIKKIM UNIVERSITY
University Portal | Contact Librarian | Library Portal

Powered by Koha