Molecular modeling and theory in chemical engineering / (Record no. 655)

MARC details
000 -LEADER
fixed length control field 07700cam a22001577a 4500
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9780127432748
040 ## - CATALOGING SOURCE
Transcribing agency CUS
082 00 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 660/.01/5118
245 00 - TITLE STATEMENT
Title Molecular modeling and theory in chemical engineering /
Statement of responsibility, etc. edited by Arup Chakraborty.
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc. San Diego, Calif. :
Name of publisher, distributor, etc. Academic Press,
Date of publication, distribution, etc. 2001.
300 ## - PHYSICAL DESCRIPTION
Extent xiv, 493 p.
Dimensions 23 cm.
505 ## - FORMATTED CONTENTS NOTE
Formatted contents note Hyperparallel Tempering Monte Carlo and Its Applications<br/>Qiliang Yan and Juan J. de Pablo<br/>Introduction<br/>Methodology<br/>Applications<br/>A. Lennard-Jones Fluid<br/>B. Primitive Model Electrolyte Solutions<br/>C. Homopolymer Solutions and Blends<br/>D. Semiflexible Polymers and Their Blends with Flexible Polymers<br/>E. Block Copolymers and Random Copolymers<br/>Discussion and Conclusion<br/>References<br/>Theory of Supercooled Liquids and Glasses:<br/>Energy Landscape and Statistical<br/>Geometry Perspectives<br/>Pablo G. Debenedetti, Frank H. Stillinger, Thomas M. IkusKETT,<br/>AND Catherine P. Lewis<br/>Introduction<br/>A. Phenomenology of Vitrification by Supercooling<br/>B. Open Questions<br/>C. Structure of This Article<br/>The Energy Landscape<br/>Statistical Geometry and Structure<br/>A. Void Geometry and Connections to the Energy Landscape<br/>B. Quantifying Molecular Disorder in Equilibrium and Glassy Systems<br/>Landscape Dynamics and Relaxation Phenomena<br/>Thermodynamics<br/>I. Introduction<br/>11. Materials Discovery<br/>A. The Space of Variables<br/>B. Library Design and Redesign<br/>C. Searching the Variable Space by Monte Carlo<br/>D. The Simplex of Allowed Compositions<br/>E. Signiricance of Sampling<br/>E The Random Phase Volume Model<br/>G. Several Monte Carlo Protocols<br/>H. Effectiveness of the Monte Carlo Strategies<br/>I. Aspects of Further Development<br/>III. Protein Molecular Evolution<br/>A. What Is Protein Molecular Evolution?<br/>B. Background on Experimental Molecular Evolution<br/>C. The Generalized NK Model<br/>D. Experimental Conditions and Constraints<br/>E. Several Hierarchical Evolution Protocols<br/>F. Possible Experimental Implementations<br/>G. Life Has Evolved to Evolve<br/>H. Natural Analogs of These Protocols<br/>I. Concluding Remarks on Molecular Evolution<br/>IV. Summary<br/>References<br/>Fluctuation Effects In Micrcemulsion Reaction Media<br/>Venkat Ganesan and Glenn H. Fredrickson<br/>1. Introduction<br/>II. Reactions in the Bicontinuous Phase<br/>A. Diffusion Equations<br/>B. Objectives<br/>C. Mean-Field Analysis<br/>D. Renormalization Group Theory<br/>£. Discussion<br/>F. Summary<br/>III. Reactions in the Droplet Phase<br/>A. Outline<br/>B. Fluctuations of the Droplet Phase<br/>C. Diffusion Equation and Perturbation Expansion<br/>D. Consideration of Temporal Regimes<br/>E. Intermediate Times<br/>F. Short Time Regime<br/>G. Effect of the P^clet Number<br/>H. Discussion .<br/>I. Other Effects<br/>J. Summary<br/>References .<br/>Molecular Dynamics Simulations of Ion-Surface<br/>Interactions with Applications to Plasma Processing<br/>David B. Graves and Cameron F. Abrams<br/>I. Introduction<br/>A. Plasma Processing<br/>B. Length Scales in Plasma Processing<br/>C. The Nature of Plasma-Surface Interactions<br/>D. Ion-Surface Interactions in Plasma Processing<br/>II. Use of Molecular Dynamics to Study Ion-Surface Interactions<br/>A. Simulation Procedure<br/>II. Mechanisms of Ion-Assisted Etching<br/>A. Experimental Studies of Ion-Assisted Etching Mechanisms<br/>B. Molecular Dynamics Studies of Ion-Assisted Etching Mechanisms<br/>C. Ion-Surface Scattering Dynamics<br/>D. Ion-Surface Interactions with both Deposition and Etching: CF3/Si<br/>[V. Concluding Remarks<br/>References<br/>Characterization of Porous Materials Using<br/>Moiecuiar Theory and Simulation<br/>Christian M. Lastoskie and Keith E. Gubbins<br/>I. Introduction<br/>II. Disordered Structure Models<br/>A. Porous Glasses<br/>B. Microporous Carbons<br/>C. Xerogels<br/>D. Templated Porous Materials<br/>III. Simple Geometric Pore Structure Models<br/>A. Molecular Simulation Adsorption Models<br/>B. Density Functional Theory Adsorption Models<br/>c. Semiempirical Adsorption Models<br/>D. Classical Adsorption Models<br/>IV. Conclusions<br/>References<br/>Modeling of Radical-Surface Interactions in the<br/>Plasma-Enhanced Chemical Vapor Deposition<br/>of Silicon Thin Films<br/>Dimitrios Maroudas<br/>I. Introduction<br/>II. Computational Methodology<br/>A. TTie Hierarchical Approach<br/>B. Density-Functional Hieory<br/>C. Empirical Description of Intcidiuimc mieraciions<br/>D. Methods of Surface Preparation<br/>Methods of Surface Characterization and Reaction Analysis<br/>III. Surface Chemical Reactivity with SiH, Radicals<br/>A. Structure of Crystalline and Amorphous Silicon Surfaces<br/>B. Interactions of SiH^ Radicals with Crystalline Silicon Surfaces<br/>C. Interactions of SiH^ Radicals with Surfaces of Amorphous<br/>Silicon Films<br/>IV. Plasma-Surface Interactions during Silicon Film Growth<br/>A. Surface Chemical Reactions during Film Growth<br/>B. Mechanism of Amorphous Silicon Film Growth . .<br/>C. Surface Evolution and Film Structural Characterization . .<br/>D. Film Surface Composition and Comparison with Experiment<br/>E. The Role of the Dominant Deposition Precursor<br/>F. The Role of Chemically Reactive Minority Species<br/>V. Summary<br/>References<br/>Nanostructure Formation and Phase Separation<br/>in Surfactant Soiutions<br/>Sanat K. Kumar, M. Antonio Floriano,<br/>AND Athanassios Z. Panagiotopoulos<br/>I. Introduction<br/>II. Simulation Details<br/>A. Models and Methods<br/>B. Some Methodological Issues<br/>III. Results<br/>A. Homopolymer Chains<br/>B. Role of Different Interaction Sets<br/>IV Discussion<br/>Some Chemical Engineering Applications<br/>of Quantum Chemical Calculations<br/>Stanley I. Sandler, Amadeu K. Sum, and Shiang-Tai Lin<br/>I. Introduction<br/>II. Ab Initio Interaction Potentials and Molecular Simulations<br/>III. Infinite Dilution Activity Coefficients and Partition Coefficients from<br/>Quantum Mechanical Continuum Solvation Models<br/>IV. Use of Computational Quantum Mechanics to Improve Thermodynamic<br/>Property Predictions from Group Contribution Methods<br/>V. Use of ab Initio Energy Calculations for Phase Equilibrium Predictions<br/>VI. Conclusions<br/>References<br/>Car-Parrlnello Methods In Chemical Engineering:<br/>Their Scope and Potential<br/>Bernhardt L. IkouT<br/>I. Introduction<br/>II. Objectives and Description of This Article<br/>III. Objectives of Car-Parrinello Methods and Classes of Problems to Which<br/>They Are Best Applicable<br/>IV. Methodology<br/>A. Classical Molecular Dynamics<br/>B. Density-Functional Theory<br/>C. Choice of Model and Solution of the Equations Using Plane-Wave<br/>Basis Sets and the Pseudopotential Method<br/>D. Car-Parrinello Molecular Dynamics<br/>V. Applications<br/>A. Gas-Phase Processes<br/>B. Processes in Bulk Materials<br/>C. Properties of Liquids, Solvation, and Reactions in Liquids<br/>D. Heterogeneous Reactions and Processes on Surfaces . .<br/>E. Phase Transitions<br/>F. Processes in Biological Systems<br/>VI. Advances in Methodology<br/>VII. Concluding Remarks<br/>Appendix A: Further Reading<br/>Appendix B: Codes with Capabilities to Perform Car-Parrinello<br/>Molecular Dynamics<br/>References<br/>Theory of Zeolite Catalysis<br/>R. A. VAN Santen and X. Rozanska<br/>I. Introduction<br/>II. The Rate of a Catalytic Reaction<br/>III. Zeolites as Solid Acid Catalysts<br/>IV. Theoretical Approaches Applied to Zeolite Catalysis<br/>A. Simulation of Alkane Adsorption and Diffusion .<br/>B. Hydrocarbon Activation by Zeolitic Protons<br/>C. Kinetics<br/>V. Concluding Remarks<br/>References<br/>Morphology, Fluctuation, Metastability,<br/>and Kinetics in Ordered Block Copolymers<br/>Zhen-Gang Wang<br/>I. Introduction<br/>II. Anisotropic Fluctuations in Ordered Phases<br/>III. Kinetic Pathways of Order-Order and Order-Disorder Transitions<br/>IV. The Nature and Stability of Some Nonclassical Phases<br/>V. Lx)ng-Wavelength Fluctuations and Instabilities<br/>VI. Morphology and Metastability in ABCTriblock Copolymers<br/>VII. Conclusions<br/>References<br/>Index<br/>Contents of Volumes in this Serial
650 #0 - SUBJECT
Keyword Chemical engineering
General subdivision Mathematical models.
650 #0 - SUBJECT
Keyword Chemical models.
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type General Books
Holdings
Withdrawn status Lost status Damaged status Not for loan Home library Current library Date acquired Full call number Accession number Date last seen Koha item type
        Central Library, Sikkim University Central Library, Sikkim University 10/05/2016 660.015118 44748 10/05/2016 General Books
SIKKIM UNIVERSITY
University Portal | Contact Librarian | Library Portal

Powered by Koha