Equilibrium and non-equilibrium statistical mechanics/ (Record no. 185918)

MARC details
000 -LEADER
fixed length control field 00383nam a2200133Ia 4500
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9789812704788
040 ## - CATALOGING SOURCE
Transcribing agency CUS
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 530.13
Item number VLI/E
100 ## - MAIN ENTRY--PERSONAL NAME
Personal name Vliet, Carolyne M. Van.
245 #0 - TITLE STATEMENT
Title Equilibrium and non-equilibrium statistical mechanics/
Statement of responsibility, etc. Carolyne M. Van Vliet
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc. New Jersey:
Name of publisher, distributor, etc. World Scientific Pub.,
Date of publication, distribution, etc. 2008.
300 ## - PHYSICAL DESCRIPTION
Extent xxvi, 960 p. :
Other physical details ill. ;
Dimensions 27 cm.
505 ## - FORMATTED CONTENTS NOTE
Formatted contents note PREFACE vii<br/>E Q U I L I B R I U M S T A T I S T I C A L M E C H A N I C S<br/>PART A. GENERAL PRINCIPLES OF MANY-PARTICLE SYSTEMS<br/>Chapter I. Introduction to the State of Large Systems and some Probability<br/>Concepts 5<br/>1.1 Purpose of statistical mechanics for classical and quantum systems 5<br/>1.2 Gamma-space and its quantum equivalent 8<br/>1.3 The thermodynamic state 12<br/>1.3.1 Macroscopic thermodynamics; Callen's entropy 12<br/>1.3.2 Statistical mechanical state functions; Gibbs' entropy 15<br/>1.4 Various ensembles and their main state functions 17<br/>1.5 Fluctuating state variables; the a- space 18<br/>1.6 Some mathematical distribution functions 20<br/>1.6.1 The binomial distribution and random walk 20<br/>1.6.2 The multinomial distribution function 24<br/>1.6.3 The Poisson distribution, Gauss distribution and normal distribution 25<br/>1.6.4 Multivariate distributions, the Maxwell¿Boltzmann distribution and<br/>the virial theorem 28<br/>1.7 Transforms of probability functions 33<br/>1.7.1 Characteristic functions 33<br/>1.7.2 The generating function according to Laplace 37<br/>1.7.3 The factorial moment generating function, Fowler transform and<br/>cumulants 38<br/>1.7.4 The Mellin transform 42<br/>1.8 Problems to Chapter I 43<br/>Chapter II. Statistics of Closed Systems 46<br/>2.1 Liouville's theorem and the microcanonical density function 46<br/>2.2 The ergodic hypothesis 48<br/>2.3 Von Neumann's theorem and the microcanonical density operator 50<br/>Table of Contents<br/>xiv<br/>2.4 Macro-probability in classical and quantum statistics 53<br/>2.5 Examples of extension in phase space and accessible number of quantum<br/>states 56<br/>2.5.1 Ideal gas 56<br/>2.5.2 An assembly of oscillators; 58<br/>2.5.3 A general form for ??(E,V,N) in the microcanonical ensemble 61<br/>2.6 Problems to Chapter II 63<br/>Chapter III. Thermodynamics in the Microcanonical Ensemble, Classical<br/>and Quantal 65<br/>3.1 Gibbs' form of the ergodic density; entropy for classical systems 65<br/>3.2 Entropy for quantum systems 69<br/>3.3 The equipartition law 71<br/>3.4 Various forms for the entropy in closed and in open systems; 73<br/>3.5 Properties of entropy 74<br/>3.5.1 Elementary entropies, Sackur¿Tetrode formula 74<br/>3.5.2 Homogeneous entropy form and Gibbs¿Duhem relation 77<br/>3.5.3 Maxwell relations 78<br/>3.5.4 Nernst¿s law and statistical mechanics 79<br/>3.6 Equilibrium and local stability requirements 81<br/>3.7 Entropy and probability 83<br/>3.7.1 Boltzmann¿s principle 84<br/>3.7.2 The Boltzmann-Einstein principle 84<br/>3.8 The Gibbs entropy function 85<br/>3.8.1 Gibbs¿ entropy function for a nonequilibrium state 85<br/>3.8.2 Failure for the second law of thermod. in precisely defined microstate 86<br/>3.8.3 Coarse-graining and the second law 87<br/>3.8.4 Fluctuations of extensive and intensive variables 88<br/>3.9 Problems to Chapter III 91<br/>Chapter IV. Ensembles in the Presence of Reservoirs: The Canonical<br/>and Grand-Canonical Ensemble 93<br/>1. GENERAL FORMALISM AND SOME QUANTUM APPLICATIONS<br/>4.1 The canonical ensemble for systems in contact with a heat bath 93<br/>4.2 The grand-canonical ensemble for systems with energy / particle exchange 96<br/>4.3 Quantum Illustrations of the canonical and grand-canonical distribution 102<br/>4.3.1 The Fermi¿Dirac and Bose¿Einstein results 102<br/>4.3.2 The one-dimensional Ising model 105<br/>Table of Contents<br/>xv<br/>2. DENSE CLASSICAL GASES AND FURTHER APPLICATIONS<br/>4.4 Second virial coefficient for a classical gas and van der Waals¿ law 108<br/>4.4.1 Ornstein¿s method as elaborated by van Kampen 109<br/>4.4.2 Van der Waals¿ equation; fluctuations and pair correlation function 112<br/>4.4.3 Cluster-integral method 117<br/>4.5 Tonk¿s hard-core gas and Takahashi¿s nearest neighbour gas 120<br/>4.6 The method of steepest descent 124<br/>4.7 Dense gases and the virial coefficients via the grand-canonical ensemble 127<br/>4.7.1 Cluster expansion 127<br/>4.7.2 Cumulant expansion 133<br/>4.8 Mean-field theories 135<br/>4.8.1 The Ising Hamiltonian and the Weiss molecular field 135<br/>4.8.2 The Bragg¿Williams method. Order-disorder transitions 137<br/>4.9 Landau¿Ginzburg theory for phase transitions; ?-points 145<br/>4.9.1 General procedure 145<br/>4.9.2 Classification of phase transitions 147<br/>4.10 Ionized gases ¿ plasmas ¿ or electron-hole gases in condensed matter 150<br/>4.10.1 Coulomb interactions. The Debye¿Hückel theory 150<br/>4.10.2 Coulomb interactions via the pair-dist. function; BBGK hierarchy 154<br/>4.11 Distribution functions, correlation functions and covariance functions 157<br/>4.12 Problems to Chapter IV 163<br/>Chapter V. Generalized Canonical Ensembles 170<br/>5.1 Formal results 170<br/>5.1.1 The generalized ensemble probability 170<br/>5.1.2 Thermodynamic functions 173<br/>5.1.3 The macroscopic thermodynamic distribution 174<br/>5.2 Transformation theory using the Fowler generating function 175<br/>5.3 Fluctuations: general results 177<br/>5.3.1 Extensive variables 177<br/>5.3.2 Intensive variables 179<br/>5.3.3 Examples and conclusions 181<br/>5.4 Carrier-density fluctuations in a solid 183<br/>5.4.1 Microscopic occupancy fluctuations 183<br/>5.4.2 Macroscopic occupancy fluctuations 185<br/>5.4.3 Examples for non-degenerate and degenerate semiconductors 186<br/>5.5 Fluctuations in systems interacting with finite reservoirs 189<br/>5.6 Alternate Fermi¿Dirac distributions 191<br/>5.7 Problems to Chapter V 195<br/>Table of Contents<br/>xvi<br/>PART B. CLASSICAL AND QUANTUM FORMALISMS. THE<br/>BOLTZMANN GAS, THE PERFECT BOSE GAS AND FERMI GAS<br/>Chapter VI. The Boltzmann Distribution and Chemical Applications 201<br/>6.1 Aspects of molecular distributions 201<br/>6.2 The Darwin¿Fowler procedure 204<br/>6.3 Thermodynamic functions and standard forms 206<br/>6.4 Fluctuations of the distribution function 208<br/>6.5 Classical Illustrations 210<br/>6.5.1 Effect of a magnetic field; Bohr-van Leeuwen theorem 210<br/>6.5.2 Generalized Sackur¿Tetrode formula and the equations of state 211<br/>6.6 Oscillators 213<br/>6.6.1 The Planck oscillator 213<br/>6.6.2 The Fermi oscillator 214<br/>6.7 Rotators 215<br/>6.8 Dielectric and paramagnetic dipoles 221<br/>6.9 Chemical equilibrium and the mass-action law 223<br/>6.10 Problems to Chapter VI 226<br/>Chapter VII. The Occupation-Number State Formalism; Spin and 228<br/>Statistics<br/>7.1 Symmetrization of states 228<br/>7.2 Systems of bosons. Creation and annihilation operators 231<br/>7.3 Many-body boson operators 234<br/>7.3.1 Expressions in terms of , ¿ k k a a 234<br/>7.3.2 Field operators and local variables 238<br/>7.4 On the quantization of fields 242<br/>7.5 Fermion operators; anticommutation rules 246<br/>7.6 Many-body fermion operators 250<br/>7.6.1 Expressions in terms of , ¿ k k c c 250<br/>7.6.2 Field operators; spin 252<br/>7.7 The boson-fermion dichotomy: general remarks 253<br/>7.8 The Hartree¿Fock equation* 254<br/>7.9 Problems to Chapter VII 258<br/>Chapter VIII. Ideal Quantum Gases and Elementary Excitations in Solids 260<br/>8.1 Bose Einstein statistics for zero-restmass particles; blackbody radiation 260<br/>8.1.1 Planck¿s law; original considerations 260<br/>Table of Contents<br/>xvii<br/>8.1.2 Quantization of the electromagnetic field; photons 262<br/>8.2 The perfect Bose gas 265<br/>8.3 Bose¿Einstein condensation 269<br/>8.3.1 The P-v¿ and the P-Tdiagram 269<br/>8.3.2 Coexisting phases and thermodynamic functions 272<br/>8.4 The perfect Fermi gas 275<br/>8.5 Lattice vibrations; phonons 280<br/>8.5.1 Continuum description. Einstein and Debye specific heat 280<br/>8.5.2 Normal modes; running-wave boson operators 282<br/>8.6 Elements of electron-phonon interaction 288<br/>8.7 Problems to Chapter VIII 295<br/>PART C. QUANTUM SYSTEMS WITH STRONG INTERACTIONS<br/>Chapter IX. Critical Phenomena: General Features of Phase Transitions 301<br/>9.1 Introductory remarks 301<br/>9.2 Critical fluctuations 302<br/>9.2.1 Elements of functional theory 302<br/>9.2.2 Landau-Ginzburg density functionals 304<br/>9.2.3 Spatial correlation function 306<br/>9.3 Critical exponents and scaling relations 309<br/>9.4 Thermodynamic inequalities 313<br/>9.4.1 Magnetic systems; the Curie-point transition 313<br/>9.4.2 Vapour-liquid transition and the coexistence region 315<br/>9.5 Dimensional analysis 318<br/>9.6 Other scaling hypotheses 319<br/>9.6.1 Widom scaling 319<br/>9.6.2 Kadanoff scaling 321<br/>9.7 Other topics in phase transitions 324<br/>9.7.1 Symmetry breaking and order parameters 324<br/>9.7.2 The tricritical point 326<br/>9.7.3 The Ginzburg criterion 330<br/>9.7.4 The Kosterlitz¿Thouless transition 331<br/>9.8 Problems to Chapter IX 334<br/>Chapter X. Renormalization: Theory and Examples 338<br/>10.1 Objective of renormalization 338<br/>10.2 The linear spin chain revisited 339<br/>Table of Contents<br/>xviii<br/>10.3 The renormalization group 343<br/>10.3.1 Fixed points, infinitesimal transformations and scaling fields 343<br/>10.3.2 Connection with Widom¿s scaling function; critical exponents 347<br/>10.4 Niemeijer¿van Leeuwen cumulant expansion for triangular lattice 348<br/>10.4.1 First-order results 350<br/>10.4.2 Higher-order results 353<br/>10.5 The ¿classical spin¿ Gaussian model 356<br/>10.6 Elements of the S4 model and the epsilon expansion 361<br/>10.7 Problems to Chapter X 370<br/>Chapter XI. The Two-dimensional Ising Model and Spin Waves 372<br/>11.1 Historical notes. Review of the 1D model 372<br/>11.2 The transfer matrix for the rectangular lattice 376<br/>11.2.1 Procedure 376<br/>11.2.2 Transformation to an interacting fermion problem 378<br/>11.2.3 Running-wave fermion operators 381<br/>11.2.4 Bogoliubov¿Valatin transformation 386<br/>11.3 The critical temperature and the thermodynamic functions 387<br/>11.4 The spontaneous magnetization 395<br/>11.4.1 Spin-spin correlation function 395<br/>11.4.2 Evaluation of the Toeplitz determinant; Onsager¿s result 400<br/>11.5 Ferromagnetism as excitation of magnons 403<br/>11.6 Bose¿Einstein statistics for magnons 406<br/>11.7 The Heisenberg antiferromagnet 408<br/>11.8 Problems to Chapter XI 412<br/>Chapter XII. Aspects of Quantum Fluids 415<br/>1. VARIOUS SPECIAL THEORIES<br/>12.1 Superfluidity; general features 415<br/>12.2 Elements of Feynman¿s theory 421<br/>12.2.1 The ground state and single-quantum excited state 421<br/>12.2.2 The excitation spectrum for T > 0 423<br/>12.3 Bogoliubov¿s theory of excitations in 4He 426<br/>12.3.1 The grand Hamiltonian 426<br/>12.3.2 The chemical potential 431<br/>12.4 Gaseous atomic Bose¿Einstein condensates 433<br/>12.4.1 Quantum equations for the near-perfect B¿E gas 434<br/>12.4.2 Properties and solutions of the Gross¿Pitaevskii equation 436<br/>Table of Contents<br/>xix<br/>12.5 Superconductivity 440<br/>12.5.1 The Fröhlich Hamiltonian 440<br/>12.5.2 Cooper pairs 443<br/>12.6 The BCS Hamiltonian 445<br/>12.6.1 The ground state 445<br/>12.6.2 Finite temperature results 450<br/>12.7 Excitations in Fermi liquids; 3He 455<br/>12.7.1 Original Fermi liquid theory (Landau) and some empirical data 455<br/>12.7.2 The ground state and pair-correlation function 465<br/>12.8 Modern developments of 3He 467<br/>12.8.1 Other excitations 467<br/>12.8.2 Balian¿Werthamer (BW) Hamiltonian for the superfluid phases 470<br/>2. FORMAL THEORY; DIAGRAMMATIC METHODS<br/>12.9 Perturbation expansion of the grand-canonical partition function 474<br/>12.9.1 The interaction picture; expansion of the evolution operator 474<br/>12.9.2 Generalized Wick¿s theorem 478<br/>12.10 Momentum-space diagrams 481<br/>12.10.1 Feynman diagrams 482<br/>12.10.2 Hugenholtz diagrams 487<br/>12.10.3 Fourier-transformed frequency diagrams 490<br/>12.11 Full Propagators (or Green¿s functions) for normal quantum fluids 494<br/>12.11.1 Spatial and momentum forms 494<br/>12.11.2 Cumulant expansion of the Green¿s function in free propagators 499<br/>12.12 Self-energy and Dyson¿s equation 502<br/>12.13 Fermi liquids revisited 506<br/>12.13.1 The Hartree¿Fock approximation 506<br/>12.13.2 The ring approximation (RPA) 513<br/>(a) Classical electron gas with positive charge background 518<br/>(b) Quantum electron gas near T = 0 520<br/>12.14 Problems to Chapter XII 523<br/>Table of Contents<br/>xx<br/>N O N - E Q U I L I B R I U M S T A T I S T I S T I C A L<br/>M E C H A N I C S<br/>PART D. CLASSICAL TRANSPORT THEORY<br/>Chapter XIII. The Boltzmann Equation and Boltzmann¿s ?-Theorem 531<br/>13.1 Introduction to Boltzmann theory 531<br/>13.2 The Boltzmann equation in velocity-position space 533<br/>13.3 The Boltzmann equation for solids with extended states 538<br/>13.4 Connection with the cross section; examples of ?(?) 543<br/>13.4.1 Matrix element squared ??cross section 543<br/>13.4.2 Classical and quantum mechanical examples of ?(?) 545<br/>13.5 Boltzmann¿s H-theorem 550<br/>13.5.1 Derivation 550<br/>13.5.2 Further discussion of Boltzmann¿s H-theorem 554<br/>13.6 The equilibrium solutions 556<br/>13.6.1 The classical gas 556<br/>13.6.2 Quantum gases 556<br/>13.7 The equilibrium entropy 558<br/>13.8 Problems to Chapter XIII 561<br/>Chapter XIV. Hydrodynamic Equations and Conservation Theorems,<br/>Barycentric Flow 563<br/>14.1 Conservation theorems 563<br/>14.1.1 Full theorems 563<br/>14.1.2 Zero-order or Eulerian conservation theorems 569<br/>14.2 The phenomenological equations in classical systems 571<br/>14.2.1 The basis of the flow problem 571<br/>14.2.2 Relaxation-time model 574<br/>14.2.3 Computation of the vector and tensor flow averages in systems<br/>with barycentric flow 576<br/>14.3 The hydrodynamic equations 581<br/>14.4 Computation of the entropy production 584<br/>14.5 Problems to Chapter XIV 588<br/>Chapter XV. Further Applications 589<br/>1. NEAR-EQUILIBRIUM TRANSPORT<br/>Table of Contents<br/>xxi<br/>15.1 Electron gas in metals: the perturbation description 589<br/>15.2 The streaming-vector method 592<br/>15.2.1 Fluxes in the absence of a magnetic field 592<br/>15.2.2 Incorporation of a magnetic field 596<br/>15.3 Entropy production and heat flux 599<br/>15.4 The phenomenological equations for solids 601<br/>15.4.1 General scheme 601<br/>15.4.2 Galvanomagnetic and thermomagnetic effects 603<br/>15.5 Mobility computations* 607<br/>15.5.1 Resistivity of metals; Bloch¿s formula 607<br/>15.5.2 Acoustic phonon scattering in nondegenerate semiconductors 612<br/>2. TRANSPORT FAR FROM EQUILIBRIUM; STEADY-STATE DISTRIBUTIONS AND FLOW<br/>15.6 The coupled Boltzmann equations in the v-language; expansion in<br/>spherical polynomials 615<br/>15.7 The zero-order and first-order collision integrals in a binary plasma 619<br/>15.8 Electron heating in plasmas: the Druyvesteyn distribution 621<br/>15.9 Coupled Boltzmann equations for hot electrons in semiconductors 623<br/>15.10 The steady-state distribution for a hot electron gas 624<br/>15.11 Transport in hot electron systems 630<br/>15.12 Problems to Chapter XV 632<br/>PART E. LINEAR RESPONSE THEORY AND QUANTUM TRANSPORT<br/>Chapter XVI. Linear Response Theory, Reduced Operators and<br/>Convergent Forms 637<br/>1. THE ORIGINAL KUBO¿GREEN FORMALISM<br/>16.1 Introduction to linear response theory 637<br/>16.2 The response function and the relaxation function 639<br/>16.3 The frequency domain; various forms 644<br/>16.3.1 The commutator form 644<br/>16.3.2 The Kubo form and the Fujita form 646<br/>16.3.3 The correlation form 648<br/>16.3.4 The fluctuation-dissipation theorem 650<br/>16.4 The Wiener¿Khintchine theorem 654<br/>16.5 Density-density correlations and the dynamic structure factor 657<br/>16.5.1 General considerations 657<br/>Table of Contents<br/>xxii<br/>16.5.2 Another form of the fluctuation-dissipation theorem 660<br/>16.5.3 Thermodynamics and sum-rules 661<br/>16.6 A return to quantum liquids 664<br/>16.6.1 Self-consistent field approximation 664<br/>16.6.2 Excitations in the Bose liquid 666<br/>16.6.3 Fermi liquids 668<br/>16.6.4 Real time Green¿s functions and the diagrammatic evaluation 672<br/>16.7 Kubo-theory conductivity computations 674<br/>16.8 Criticism of linear response theory 677<br/>16.8.1 Van Kampen¿s objections 677<br/>16.8.2 Our criticism 678<br/>2. REDUCED OPERATORS AND CONVERGENT FORMS<br/>16.9 The master operator in Liouville space 679<br/>16.9.1 Results for small times 681<br/>16.9.2 Results for large times 685<br/>16.10 Irreversible transport equations via projector operators 686<br/>16.10.1 Some theorems 686<br/>16.10.2 Reduction of the Heisenberg equation of motion; diagonal part 689<br/>16.10.3 The full reduced Heisenberg equation and the current operator 692<br/>16.10.4 Consequences for the many-body response formulae 696<br/>16.11 The Pauli¿Van Hove master equation 698<br/>16.12 The full master equation (FME) 701<br/>16.13 Approach to equilibrium 704<br/>16.14 The Onsager¿Casimir reciprocity relations 705<br/>16.14.1 The diagonal correlation functions 705<br/>16.14.2 The nondiagonal correlation functions 708<br/>16.14.3 Some lemmas 710<br/>16.15 An exact response result: Cohen¿Van Vliet 711<br/>16.16 Problems to Chapter XVI 715<br/>Chapter XVII. The Quantum Boltzmann Equation and Some Applications 719<br/>1. THE QUANTUM BOLTZMANN EQUATION: SCOPE AND ESSENCE<br/>17.1 From the master equation to the quantum Boltzmann equation 719<br/>17.1.1 The quantum Boltzmann equation for binary interactions 720<br/>17.1.2 The quantum Boltzmann equation for electron-phonon interaction 724<br/>17.2 Discussion of the equilibrium and steady-state distribution 725<br/>17.3 Extended states. Recovery of the BTE via the Wigner formalism 727<br/>Table of Contents<br/>xxiii<br/>17.4 Generalized Calecki equation for the nonlinear current flux 731<br/>17.5 The linearized quantum Boltzmann equation* 732<br/>17.6 Electrical Conductivities in the linear regime* 735<br/>17.6.1 Ponderomotive conductivities 736<br/>17.6.2 The Argyres¿Roth formula for the collisional conductivity 738<br/>17.7 Localised states: a direct perturbation treatment 739<br/>17.8 Diagonal and nondiagonal conductivities from modified LRT 741<br/>2. SOME APPLICATIONS OF MODIFIED LINEAR RESPONSE THEORY<br/>17.9 Landau states: 3D applications 744<br/>17.9.1 The ordinary Hall effect 744<br/>17.9.2 Transverse magnetoresistance 747<br/>17.10 Landau States: 2D and 1D applications 749<br/>17.10.1 The quantum Hall effect 749<br/>17.10.2 Magnetophonon resonances 752<br/>17.11 Slightly disordered metals. The Aharonov¿Bohm effect 760<br/>17.11.1 Landauer¿Büttiker models 763<br/>17.11.2 Diagrammatic methods 764<br/>17.11.3 Modified LRT results 765<br/>3. THE MASTER HIERARCHY<br/>17.12 Kinetic Equations for quantum systems with binary interactions 771<br/>17.12.1 Fermion moment equations and Fokker¿Planck moments 771<br/>17.12.2 Boson moment equations 777<br/>17.13 Problems to Chapter XVII 778<br/>PART F. STOCHASTIC PHENOMENA<br/>Chapter XVIII. Brownian Motion and the Mesoscopic Master Equation 781<br/>18.1 Introduction to fluctuations and stochastic phenomena 781<br/>1. THE MESOSCOPIC MASTER EQUATION AND THE MOMENT EQUATIONS<br/>18.2 Probabilistic description of Ornstein and Burger 783<br/>18.2.1 Purely random processes 783<br/>18.2.2 Markovian random processes 784<br/>18.3 Derivation of the mesoscopic master equation 786<br/>Table of Contents<br/>xxiv<br/>18.4 The Kramers¿Moyal expansion and the Fokker¿Planck equation 789<br/>18.5 The phenomenological equations and the fluctuation-relaxation theorem 790<br/>18.5.1 One-variable master equation; birth-death rate processes 795<br/>18.5.2 Multivariate gain-loss processes 798<br/>18.5.3 Electronic fluctuations out of equilibrium 800<br/>18.5.4 Fluctuations about the hydrodynamic state; Brillouin scattering 804<br/>18.6 The Langevin equation 805<br/>18.6-1 General procedure 805<br/>18.6.2 The sources of gain-loss processes and of G-R noise 809<br/>2. BROWNIAN MOTION PROPER. VELOCITY FLUCTUATIONS AND DIFFUSION<br/>18.7 Diffusion and random walk 811<br/>18.7.1 Einstein¿s result 811<br/>18.7.2 Langevin approach of Uhlenbeck and Ornstein 812<br/>18.7.3 Fokker¿Planck solution for the bivariate process{v(t),r(t)} 813<br/>18.7.4 Harmonically bound Brownian particle 816<br/>18.8 Velocity fluctuations and diffusion in condensed matter 817<br/>3. SPECTRAL ANALYSIS<br/>18.9 Overview and Wiener¿Khintchine theorem 821<br/>18.10 The short-time average. MacDonald¿s theorem and Milatz¿ theorem 822<br/>18.10.1 Application to shot noise and similar phenomena 824<br/>18.10.2 Modulated emission noise and wave-interaction noise 826<br/>18.11 Method of elementary events. Campbell¿s and Carson¿s theorems 829<br/>18.12 The Allan-variance theorem 833<br/>18.12.1 Inversion of the Allen variance theorem 836<br/>18.12.2 Counting experiments; non-adjacent sampling 840<br/>18.13 On the origin of 1/f-like noise 842<br/>18.13 The spectra of G-R noise 843<br/>18.13.1 Three-level systems 843<br/>18.14.2 General structure of multi-level G-R noise 850<br/>18.14 Problems to Chapter XVIII 854<br/>Chapter XIX. Branching Processes and Continuous Stochastic Processes 857<br/>1. THE COMPOUNDING THEOREM AND APPLICATIONS<br/>19.1 The compounding theorem, variance theorem and addition theorem 857<br/>19.2 Bernoulli and geometric compounding 860<br/>Table of Contents<br/>xxv<br/>2. METHOD OF RECURRENT GENERATING FUNCTIONS<br/>19.3 Preamble 864<br/>19.4 Singly-incited branching processes. One-carrier avalanche 865<br/>19.5 Doubly-incited branching processes. Two-carrier avalanche 869<br/>3. TRANSPORT FLUCTUATIONS<br/>19.6 On the two Green¿s function procedures for transport noise 877<br/>19.6.1 The correlation method and uniqueness 878<br/>19.6.2 The response form or Langevin form 883<br/>19.7 Applications: Rayleigh diffusion and ambipolar sweep-out 885<br/>19.8 Inhomogeneous systems, effect of boundary terms, examples 890<br/>19.9 Problems to Chapter XIX 896<br/>Chapter XX. Stochastic Optical Signals and Photon Fluctuations 898<br/>20.1 Introductory remarks 898<br/>20.2 Analytic signals and coherence 900<br/>20.3 The quantum field 905<br/>20.4 The pseudo-classical field 907<br/>20.4.1 Sudarshan¿Glauber transform of the statistical density operator 907<br/>20.4.2 Pseudo-classical form of the coherence tensors 908<br/>20.5 Examples for thermal and non-thermal radiation fields 910<br/>20.6 Photon counting. Theory and some experimental results 917<br/>20.7 Problems to Chapter XX 922<br/>Appendix A. The Schrödinger, Heisenberg and Interaction Pictures 923<br/>A.1 Schrödinger form 923<br/>A.2 The Heisenberg picture and connection with classical mechanics 924<br/>A.3 The interaction picture 926<br/>Appendix B. Spin and Statistics 929<br/>B.1 Generalities on fields 930<br/>B.2 Statistics for a scalar spin-zero field 933<br/>B.3 The connection for a field of general spin 935<br/>AUTHOR INDEX 941<br/>SUBJECT INDEX 947
650 ## - SUBJECT
Keyword Nonequilibrium statistical mechanics
650 ## - SUBJECT
Keyword Quantum statistics
650 ## - SUBJECT
Keyword Statistical mechanics
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type General Books
Holdings
Withdrawn status Lost status Damaged status Not for loan Home library Current library Shelving location Date acquired Full call number Accession number Date last seen Date last checked out Koha item type Public note
        Science Library, Sikkim University Science Library, Sikkim University Science Library General Section 29/08/2016 530.13 VLI/E P40931 25/07/2019 25/07/2019 General Books Science Library Books For SU Science Library
SIKKIM UNIVERSITY
University Portal | Contact Librarian | Library Portal

Powered by Koha