Comprehensive biotechnology Vol. 5/ (Record no. 180141)
[ view plain ]
000 -LEADER | |
---|---|
fixed length control field | 00387nam a2200121Ia 4500 |
040 ## - CATALOGING SOURCE | |
Transcribing agency | CUS |
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER | |
Classification number | 660.6 |
Item number | MOO/C |
245 #0 - TITLE STATEMENT | |
Title | Comprehensive biotechnology Vol. 5/ |
Sub title | principles and practices in industry agriculture medicine and the environment |
Statement of responsibility, etc. | Moo-Young,Murray |
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT) | |
Place of publication, distribution, etc. | Amsterdam: |
Name of publisher, distributor, etc. | Elsevier, |
Date of publication, distribution, etc. | 2011. |
300 ## - PHYSICAL DESCRIPTION | |
Extent | 690 |
505 ## - FORMATTED CONTENTS NOTE | |
Formatted contents note | 5.01. Introduction<br/><br/>5.02. Functional Biomaterials<br/><br/>Glossary<br/><br/>5.02.1. Introduction<br/><br/>5.02.2. Current Use of Materials in Medicine<br/><br/>5.02.3. Functionality in Biomaterials<br/><br/>5.02.4. Conclusions<br/><br/>5.03. Biomaterials/Cryogels<br/><br/>Glossary<br/><br/>5.03.1. Introduction<br/><br/>5.03.2. Production of Cryogels in Semi-Frozen Systems<br/><br/>5.03.3. Cryogel Characterization<br/><br/>5.03.4. Cryogel Properties<br/><br/>5.03.5. Composite Cryogel Materials: Inherent Features and Applications<br/><br/>5.03.6. Cryogels in Biomedicine and Biotechnology<br/><br/>5.04. Biomaterials<br/><br/>Glossary<br/><br/>5.04.1. Introduction<br/><br/>5.04.2. Principle of Electrospinning<br/><br/>5.04.3. Electrospun Biomaterials: A Wide Range of Possibilities<br/><br/>5.04.4. Applications of Electrospun Biomaterials<br/><br/>5.04.5. Biocompatibility of Electrospun Biomaterials<br/><br/>5.04.6. Electrospun Biomaterials for 3D Tissue Regeneration<br/><br/>5.04.7. Current Challenges with Electrospun Biomaterials<br/><br/>5.04.8. Conclusion<br/><br/>5.05. Mesoscale Engineering of Collagen as a Functional Biomaterial<br/><br/>Glossary<br/><br/>Acknowledgment<br/><br/>5.05.1. Introduction<br/><br/>5.05.2. Two Application Streams for Engineered Tissues<br/><br/>5.05.3. Which Cell Support Materials to Use: Indirect and Direct TE?<br/><br/>5.05.4. Interstitial Cell Seeding: Cell-Matrix Embedding from the Start<br/><br/>5.05.5. Structure of Collagen – A Raw Material for Weavers?<br/><br/>5.05.6. Collagen Materials: Engineering the Basics<br/><br/>5.05.7. Building Blocks<br/><br/>5.05.8. Antigenicity<br/><br/>5.05.9. Collagen Purity (and Antigenicity)<br/><br/>5.05.10. Bottom-Up Collagen Engineering, Where Is the Bottom – Amino Acids or Tropocollagen?<br/><br/>5.05.11. Conclusion<br/><br/>5.06. Biomaterials<br/><br/>Glossary<br/><br/>5.06.1. Introduction<br/><br/>5.06.2. Temperature-Responsive Intelligent Surfaces for Chromatographic Separation<br/><br/>5.06.3. Temperature-Responsive Intelligent Surfaces for Cell Culture<br/><br/>5.07. Surface Modification to Improve Biocompatibility<br/><br/>Glossary<br/><br/>5.07.1. Introduction<br/><br/>5.07.2. Surface Events, Interactions, and Material Characteristics<br/><br/>5.07.3. Surface Modification<br/><br/>5.07.4. Future<br/><br/>5.07.5. Conclusions<br/><br/>5.08. Cryopreservation<br/><br/>Glossary<br/><br/>Acknowledgments<br/><br/>5.08.1. Introduction<br/><br/>5.08.2. Cryopreservation Methodology<br/><br/>5.08.3. Natural Tissue Cryopreservation<br/><br/>5.08.4. Engineered Tissue Cryopreservation<br/><br/>5.08.5. Future Challenges<br/><br/>5.09. The Artificial Organ<br/><br/>Glossary<br/><br/>Acknowledgments<br/><br/>5.09.1. Introduction<br/><br/>5.09.2. Materials of Encapsulation<br/><br/>5.09.3. Properties of the Microcapsules<br/><br/>5.09.4. Applications of Encapsulated Cells<br/><br/>5.09.5. Conclusions and Future Considerations<br/><br/>5.10. Isolation of Mesenchymal Stem Cells from Bone Marrow Aspirate<br/><br/>Glossary<br/><br/>5.10.1. The Cellular Composition of Bone Marrow<br/><br/>5.10.2. Why Isolate MSC Populations?<br/><br/>5.10.3. Separation Techniques<br/><br/>5.10.4. Conclusions<br/><br/>5.11. Nanoimprint Lithography and Its Application in Tissue Engineering and Biosensing<br/><br/>Glossary<br/><br/>5.11.1. Introduction<br/><br/>5.11.2. Biosensing Applications of NIL<br/><br/>5.11.3. Application of NIL in Tissue Engineering<br/><br/>5.11.4. Appendix: Additional References<br/><br/>5.12. Microfluidic Technology and Its Biological Applications<br/><br/>Glossary<br/><br/>5.12.1. Introduction<br/><br/>5.12.2. Microfluidic Technology<br/><br/>5.12.3. Basic Components in Microfluidic Systems<br/><br/>5.12.4. Biological Applications<br/><br/>5.12.5. Concluding Remarks<br/><br/>5.13. Multifunctional Biosensor Development and Manufacture<br/><br/>Glossary<br/><br/>5.13.1. Introduction<br/><br/>5.13.2. Biomolecule Immobilization<br/><br/>5.13.3. Transduction Technologies<br/><br/>5.13.4. Potentiometric Transduction<br/><br/>5.13.5. Optical Transduction<br/><br/>5.13.6. Nanowire Arrays<br/><br/>5.13.7. Micromechanical<br/><br/>5.13.8. Recent Developments<br/><br/>5.13.9. Conclusions<br/><br/>5.14. Treating Intracranial Aneurysms – A Review of Existing and Emerging Methods<br/><br/>Glossary<br/><br/>5.14.1. Introduction<br/><br/>5.14.2. Existing Options for Treating Intracranial Aneurysms<br/><br/>5.14.3. Cerebral Stents for Direct Treatment of Intracranial Aneurysms<br/><br/>5.14.4. Conclusions<br/><br/>5.15. RNA Interference (RNAi) Technology<br/><br/>Glossary<br/><br/>5.15.1. Introduction<br/><br/>5.15.2. The Discovery of the Phenomena<br/><br/>5.15.3. The Mechanism of RNAi<br/><br/>5.15.4. The Discovery of miRNA Pathway and Functions of miRNA<br/><br/>5.15.5. The Generation of siRNA<br/><br/>5.15.6. The Assessment of siRNA Specificity and Off-Target Effects<br/><br/>5.15.7. The Progress of siRNA Drug Development<br/><br/>5.15.8. Conclusion Remarks<br/><br/>5.16. Rheology and Its Applications in Biotechnology<br/><br/>Glossary<br/><br/>5.16.1. Introduction<br/><br/>5.16.2. Shear Rheometry<br/><br/>5.16.3. Material Rheology<br/><br/>5.16.4. Other Rheological Considerations<br/><br/>5.16.5. Applications<br/><br/>5.16.6. Conclusion<br/><br/>5.17. Biological Fluid Mechanics<br/><br/>Glossary<br/><br/>Acknowledgment<br/><br/>5.17.1. Introduction<br/><br/>5.17.2. Vascular Diseases<br/><br/>5.17.3. Computational Biofluid Techniques<br/><br/>5.17.4. Evolving to Multiscale, Multiphysics Models<br/><br/>5.17.5. Epilogue<br/><br/>5.18. Mechanobiology of Bone<br/><br/>Glossary<br/><br/>5.18.1. Introduction<br/><br/>5.18.2. Fundamental Cell Mechanics<br/><br/>5.18.3. A Case Study of Mechanobiology: Bone<br/><br/>5.18.4. Bone Anatomy<br/><br/>5.18.5. The Osteocyte<br/><br/>5.18.6. Basic Mechanics of Solid Materials<br/><br/>5.18.7. A Top-Down Approach to Bone Mechanosensation: What Happens to a Bone When You Take a Step?<br/><br/>5.18.8. The Effect of Fluid Flow on the Osteocyte<br/><br/>5.18.9. Nonmechanical Fluid Flow Effects on the Osteocyte<br/><br/>5.18.10. Intracellular Signaling Downstream of Mechanical Deformation<br/><br/>5.18.11. Osteocyte Mechanotransduction Guides Bone Remodeling<br/><br/>5.18.12. How BMUs Remodel Bone<br/><br/>5.18.13. Outcome of Bone Remodeling<br/><br/>5.18.14. Biomedical Applications<br/><br/>5.18.15. Summary<br/><br/>5.19. Biofluids | Microcirculation<br/><br/>Glossary<br/><br/>5.19.1. Introduction<br/><br/>5.19.2. Interaction between Blood Cells and the Capillary Wall<br/><br/>5.19.3. Transcapillary Exchange of Fluid and Solute<br/><br/>5.19.4. Transport of HA across the Synovial Lining of Joint Cavities<br/><br/>5.19.5. Summary and Future Perspective<br/><br/>5.20. Emerging Trends in Tissue Engineering<br/><br/>Glossary<br/><br/>Acknowledgment<br/><br/>5.20.1. Introduction<br/><br/>5.20.2. Tissue-Engineering Strategies<br/><br/>5.20.3. Microscale Technologies<br/><br/>5.20.4. Bioreactors<br/><br/>5.20.5. Translation into Clinical Applications<br/><br/>5.20.6. Cell Sourcing<br/><br/>5.20.7. Future Directions<br/><br/>5.20.8. Conclusion<br/><br/>5.21. Cartilage Tissue Engineering Using Embryonic Stem Cells<br/><br/>Glossary<br/><br/>5.21.1. Introduction and Scope<br/><br/>5.21.2. OA Pathophysiology<br/><br/>5.21.3. Current Therapeutic Strategies for Cartilage Defects<br/><br/>5.21.4. Cartilage Biology and Chondrogenesis<br/><br/>5.21.5. Stem Cells<br/><br/>5.21.6. Cartilage Tissue Engineering Using ESCs<br/><br/>5.21.7. Conclusions<br/><br/>5.22. Tissue Engineering<br/><br/>Glossary<br/><br/>Acknowledgments<br/><br/>5.22.1. Introduction and Overview<br/><br/>5.22.2. Clinical Need<br/><br/>5.22.3. Skeletal Stem Cells – Identification, Expansion, and Differentiation<br/><br/>5.22.4. Growth Factors<br/><br/>5.22.5. Matrices for Bone Regeneration<br/><br/>5.22.6. Interactive Role of Vasculature in Skeletal Regeneration<br/><br/>5.22.7. In vivo Models of Skeletal Regeneration<br/><br/>5.22.8. Clinical Translation<br/><br/>5.22.9. Summary<br/><br/>5.23. Tendon Tissue Engineering<br/><br/>Glossary<br/><br/>5.23.1. Introduction<br/><br/>5.23.2. Rotator Cuff Anatomy<br/><br/>5.23.3. Etiology of Tears<br/><br/>5.23.4. Reduced Tendon Healing<br/><br/>5.23.5. Tissue-Engineering Approach<br/><br/>5.23.6. What Are Stem Cells?<br/><br/>5.23.7. Stem Cell Identification<br/><br/>5.23.8. Potential Uses in Other Fields<br/><br/>5.23.9. Application to Tendon<br/><br/>5.23.10. Rotator Cuff Tendon Application<br/><br/>5.23.11. Which Procedure for Which Patients?<br/><br/>5.23.12. Determining Ideal Conditions<br/><br/>5.23.13. Potential Problems<br/><br/>5.23.14. Conclusions<br/><br/>5.23.15. Biological Agents<br/><br/>5.23.16. Scaffolds<br/><br/>5.23.17. Conclusions and the Future<br/><br/>5.24. Complexity in Modeling of Cartilage Tissue Engineering<br/><br/>Glossary<br/><br/>5.24.1. Introduction<br/><br/>5.24.2. Nutrients and Wastes<br/><br/>5.24.3. Cell Proliferation/Death<br/><br/>5.24.4. Matrix Deposition<br/><br/>5.24.5. Permeability/Diffusivity<br/><br/>5.24.6. Mechanical Property<br/><br/>5.24.7. Different Culture Systems<br/><br/>5.24.8. In Vivo Tissue Engineering<br/><br/>5.24.9. Discussion<br/><br/>5.25. Tissue Engineering of Fibrocartilaginous Tissues<br/><br/>Glossary<br/><br/>Acknowledgments<br/><br/>5.25.1. Introduction<br/><br/>5.25.2. Anatomy, Structure, and Function<br/><br/>5.25.3. Composition of the Extracellular Matrix and Its Organization<br/><br/>5.25.4. Pathologies and Current Treatments of the Fibrocartilages<br/><br/>5.25.5. Tissue Engineering<br/><br/>5.25.6. Conclusion<br/><br/>5.26. Tissue Engineering of Normal and Abnormal Bone Marrow<br/><br/>Glossary<br/><br/>5.26.1. Introduction<br/><br/>5.26.2. BM Structure<br/><br/>5.26.3. Modeling Artificial Niches<br/><br/>5.26.4. Perturbations in the BM Microenvironment<br/><br/>5.26.5. Conclusion<br/><br/>5.27. Evaluation of Silk as a Scaffold for Musculoskeletal Regeneration – the Path from the Laboratory to Clinical Trials<br/><br/>Glossary<br/><br/>Acknowledgments<br/><br/>5.27.1. Introduction<br/><br/>5.27.2. Common Types of Silk Scaffolds<br/><br/>5.27.3. A Review of Studies of Silk Scaffolds for Musculoskeletal Tissue Engineering<br/><br/>5.27.4. An Evaluation of Silk as a Scaffold for Musculoskeletal Repair – in the Context of Medical Device Regulations<br/><br/>5.27.5. Summary<br/><br/>5.28. Tissue-Engineering Technology for Tissue Repair and Regeneration<br/><br/>Glossary<br/><br/>Acknowledgments<br/><br/>5.28.1. Introduction<br/><br/>5.28.2. Basic Principles of Tissue engineering<br/><br/>5.28.3. Tissue Generation with Tissue-Engineering Technology<br/><br/>5.28.4. Application of Engineered Tissue for Tissue Repair<br/><br/>5.28.5. Clinical Application of Engineered Tissue Repair<br/><br/>5.28.6. Development of Engineered Tissue Products<br/><br/>5.28.7. Summary<br/><br/>5.29. Induced Pluripotent Stem Cells and Their Application to Personalized Therapy<br/><br/>Glossary<br/><br/>5.29.1. Introduction<br/><br/>5.29.2. hiPSCs Are Similar to, but Not Identical to, hESCs<br/><br/>5.29.3. Generating hiPSCs<br/><br/>5.29.4. Genetic Manipulation of hiPSCs<br/><br/>5.29.5. Generating Differentiated Cell Populations<br/><br/>5.29.6. Transplantation of hiPSC-Derived Cells<br/><br/>5.29.7. Patient Safety<br/><br/>5.29.8. Conclusion<br/><br/>5.30. Expansion of Hematopoietic Stem/Progenitor Cells<br/><br/>Glossary<br/><br/>5.30.1. Introduction<br/><br/>5.30.2. Sources of HSPCs<br/><br/>5.30.3. Requirement of Expansion Folds and Quality of HSPCs<br/><br/>5.30.4. Expansion of HSPCs under Common Static Culture Condition<br/><br/>5.30.5. Expansion of HSPCs under Dynamic Bioreactor Culture Conditions<br/><br/>5.30.6. Mimicking the In Vivo Microenvironment to Expand HSPCs<br/><br/>5.30.7. Brief Introduction of Clinical Application Tests with Expanded HSPCs<br/><br/>5.30.8. Summary<br/><br/>5.31. Umbilical Cord Blood Stem Cell Banking<br/><br/>Glossary<br/><br/>5.31.1. Introduction and Scope<br/><br/>5.31.2. Cord Blood Bank Models<br/><br/>5.31.3. Advantages and Disadvantages of Unrelated Cord Blood Hematopoietic Stem Cell Transplants<br/><br/>5.31.4. The Provision of Altruistic Unrelated Cord Blood Banked Units from Public Cord Blood Banks<br/><br/>5.31.5. The Regulation of Cord Blood Banks<br/><br/>5.31.6. Improving the Quality of Cord Blood Units for Human Use<br/><br/>5.32. Stem Cell Therapy to Treat Heart Failure<br/><br/>Glossary<br/><br/>Acknowledgments<br/><br/>5.32.1. Introduction – Cell-Based Therapy for Cardiac Disease<br/><br/>5.32.2. Major Unmet and Compelling Clinical Need Drives Stem Cell Research and Trials in Heart Failure<br/><br/>5.32.3. Current Therapies in Heart Failure<br/><br/>5.32.4. Mechanisms of Cardiac Regeneration<br/><br/>5.32.5. Which Stem Cells Type Can Be Suitable for Cardiac Cell Therapy?<br/><br/>5.32.6. Cell Delivery<br/><br/>5.32.7. Clinical Trials with Bone Marrow-Derived Stem Cells<br/><br/>5.32.8. Conclusions and Future Challenges<br/><br/>5.33. Expansion of hMSCs and Their Application<br/><br/>Glossary<br/><br/>5.33.1. Introduction<br/><br/>5.33.2. Isolation of hMSCs<br/><br/>5.33.3. Expansion of hMSCs<br/><br/>5.33.4. Quality Control<br/><br/>5.33.5. Application of hMSCs<br/><br/>5.33.6. Summary<br/><br/>5.34. Cell Therapy for Parkinson’s Disease<br/><br/>Glossary<br/><br/>5.34.1. Introduction<br/><br/>5.34.2. ESCs or NSCs: Pros and Cons<br/><br/>5.34.3. Concluding Remarks<br/><br/>5.35. Stem Cell Therapy Facility Design<br/><br/>Glossary<br/><br/>5.35.1. Introduction<br/><br/>5.35.2. Stem Cell Transplantation Area<br/><br/>5.35.3. Stem Cells and Regenerative Medicine Technology Research Center Design<br/><br/>5.35.4. Conclusion<br/><br/>5.36. Stem Cell Research and Molecular Markers in Medicine<br/><br/>Glossary<br/><br/>5.36.1. Introduction<br/><br/>5.36.2. Definition and Characteristics of MSCs<br/><br/>5.36.3. Sources of Other MSCs<br/><br/>5.36.4. Application of Human MSCs in Regenerative Medicine<br/><br/>5.36.5. Aging and Replicative Senescence Affect the Use of MSCs in Regenerative Therapy<br/><br/>5.36.6. Osteogenesis and Angiogenesis: Applications in Regenerative Therapy<br/><br/>5.37. Stem Cell Therapy – MRI for In Vivo Monitoring of Cell and Tissue Function<br/><br/>Glossary<br/><br/>Acknowledgments<br/><br/>5.37.1. Introduction<br/><br/>5.37.2. MRI for Tracking Stem Cell Fate<br/><br/>5.37.3. Applications of Stem Cell Tracking<br/><br/>5.37.4. MRI for Measuring Tissue Function after Stem Cell Therapy<br/><br/>5.37.5. Conclusions<br/><br/>5.38. Cryopreservation of Stem Cells<br/><br/>Glossary<br/><br/>Acknowledgment<br/><br/>5.38.1. Introduction<br/><br/>5.38.2. Stem Cells<br/><br/>5.38.3. Cryopreservation<br/><br/>5.38.4. Cryopreservation of Stem Cells<br/><br/>5.38.5. Concluding Remarks<br/><br/>5.39. Biopharmaceutical Development<br/><br/>Glossary<br/><br/>5.39.1. Introduction<br/><br/>5.39.2. Development of Vaccines<br/><br/>5.39.3. The Biopharmaceutical Development Pipeline<br/><br/>5.39.4. Regulatory Requirements<br/><br/>5.39.5. Selection of Biotherapeutic Protein Expression Systems<br/><br/>5.39.6. Development of Mammalian Cell Lines<br/><br/>5.39.7. Development of Mammalian Expression Vectors<br/><br/>5.39.8. Cell Culturing and Product Generation<br/><br/>5.39.9. Downstream Processing of Biopharmaceuticals<br/><br/>5.39.10. Viral Inactivation of Biologics<br/><br/>5.39.11. Process Analytical Technology<br/><br/>5.39.12. Formulation and Drug Delivery Systems<br/><br/>5.39.13. Biosimilars<br/><br/>5.39.14. Conclusions<br/><br/>5.40. Bioseparations<br/><br/>Glossary<br/><br/>5.40.1. Introduction<br/><br/>5.40.2. Tangential Flow MF<br/><br/>5.40.3. Depth Filtration<br/><br/>5.40.4. Sterile Filtration<br/><br/>5.40.5. Virus Filtration<br/><br/>5.40.6. Membrane Chromatography<br/><br/>5.40.7. Ultrafiltration<br/><br/>5.40.8. High-Performance Tangential Flow Filtration<br/><br/>5.41. Pharmaceutical Proteins – Structure, Stability, and Formulation<br/><br/>Glossary<br/><br/>5.41.1. Introduction<br/><br/>5.41.2. The Structure of Proteins<br/><br/>5.41.3. The Stability of Proteins<br/><br/>5.41.4. Formulation and Stabilization of Proteins in the Liquid State<br/><br/>5.41.5. Solid-State Protein Formulations<br/><br/>5.41.6. Conclusions<br/><br/>5.42. In Vitro Cancer Model for Drug Testing<br/><br/>Glossary<br/><br/>5.42.1. Introduction<br/><br/>5.42.2. In Vitro Cancer Model<br/><br/>5.42.3. 2D versus 3D Cancer Model<br/><br/>5.42.4. 3D Models<br/><br/>5.42.5. Summary<br/><br/>5.43. In Vitro Micro-Tissue and -Organ Models for Toxicity Testing<br/><br/>Glossary<br/><br/>5.43.1. Introduction<br/><br/>5.43.2. Development of In Vitro Tissue Models<br/><br/>5.43.3. Progress in Toxicity Testing Using In Vitro Micro-Tissue Models<br/><br/>5.43.4. Commercial Development of In Vitro Micro-Tissue Models for Toxicity Testing<br/><br/>5.43.5. Summary<br/><br/>5.44. Development of In Vitro Neural Models for Drug Discovery and Toxicity Screening<br/><br/>Glossary<br/><br/>Acknowledgments<br/><br/>5.44.1. Introduction<br/><br/>5.44.2. Cell Sources<br/><br/>5.44.3. Cell Culture Methods<br/><br/>5.44.4. In Vitro Cell-Based Assay<br/><br/>5.44.5. Discussion<br/><br/>5.45. In Vitro Chronic Neurotoxicity Assays<br/><br/>Glossary<br/><br/>5.45.1. Introduction<br/><br/>5.45.2. NT2.D1 Cells: Background<br/><br/>5.45.3. NT2.D1 and Toxicity Evaluation<br/><br/>5.45.4. NT2.D1s and Developmental Neurotoxicity<br/><br/>5.45.5. 3-D Culture: Available Models and Applications<br/><br/>5.45.6. Models of the BBB<br/><br/>5.45.7. The Future – In Vitro Chronic Models of Neurotoxicity<br/><br/>5.46. The Delivery of Drugs – Peptides and Proteins<br/><br/>Glossary<br/><br/>5.46.1. Introduction<br/><br/>5.46.2. The Delivery of Peptides and Proteins<br/><br/>5.46.3. Routes of Peptide and Protein Administration<br/><br/>5.46.4. Conclusions<br/><br/>5.47. Enzyme-Sensitive Biomaterials for Drug Delivery<br/><br/>Glossary<br/><br/>Acknowledgment<br/><br/>5.47.1. Introduction<br/><br/>5.47.2. Enzyme-Sensitive Polymer–Drug Conjugate<br/><br/>5.47.3. Enzyme-Sensitive Hydrogel<br/><br/>5.47.4. Enzyme-Sensitive Particulate Carriers<br/><br/>5.47.5. Conclusions<br/><br/>5.48. Drug Delivery Using Microneedles<br/><br/>Glossary<br/><br/>5.48.1. Introduction<br/><br/>5.48.2. The Skin Structure<br/><br/>5.48.3. Variation of Skin Thickness<br/><br/>5.48.4. Types of Microneedles<br/><br/>5.48.5. Methods of Drug Delivery Using Microneedles<br/><br/>5.48.6. Microneedle Fabrication<br/><br/>5.48.7. Materials of Fabrication<br/><br/>5.48.8. Method of Coating Solid Microneedles<br/><br/>5.48.9. Uses and Applications in Drug Delivery<br/><br/>5.48.10. Advantages and Limitations of Microneedles<br/><br/>5.48.11. Mathematical Models of Transdermal Delivery by Microneedles<br/><br/>5.48.12. Conclusion<br/><br/>5.49. Carbon Nanotube for Drug Delivery and Controlled Release<br/><br/>Glossary<br/><br/>5.49.1. Introduction<br/><br/>5.49.2. CNT Processing and Measurement<br/><br/>5.49.3. Drug Delivery<br/><br/>5.49.4. Toxicology<br/><br/>5.50. Drug Delivery Across the Blood–Brain Barrier<br/><br/>Glossary<br/><br/>5.50.1. Introduction<br/><br/>5.50.2. Transport Across the BBB<br/><br/>5.50.3. CNS Delivery Strategies<br/><br/>5.50.4. Conclusions<br/><br/>5.51. Organ Transplant<br/><br/>Glossary<br/><br/>5.51.1. Overview<br/><br/>5.51.2. Introduction to Transplantation<br/><br/>5.51.3. Focus on Antibody-Mediated Allograft Rejection<br/><br/>5.51.4. Small Animal Models in Studying AMR<br/><br/>5.51.5. Experimental Progress in Prevention of AMR Using Free Bone Grafting<br/><br/>5.51.6. Strategy to Prevent AMR in Presensitized Recipients through Terminal Complement Blockade<br/><br/>5.51.7. Summary and Conclusions<br/><br/>5.52. Artificial Organs<br/><br/>Glossary<br/><br/>5.52.1. Introduction<br/><br/>5.52.2. Kidney Anatomy and Physiology<br/><br/>5.52.3. Principles of Modern Dialysis<br/><br/>5.52.4. Improved Dialysis Therapies<br/><br/>5.52.5. Emerging Technologies in Tissue Engineering and Regenerative Medicine<br/><br/>5.52.6. Conclusions and Future Prospects<br/><br/>5.53. Artificial Organs | Pancreas<br/><br/>Glossary<br/><br/>Acknowledgments<br/><br/>5.53.1. Introduction<br/><br/>5.53.2. Artificial Pancreas<br/><br/>5.53.3. Cell- and Tissue-Based Therapies for IDD<br/><br/>5.53.4. Concluding Remarks<br/><br/>5.54. Hemoglobin-Based Blood Substitutes – Preparation Technologies and Challenges<br/><br/>Glossary<br/><br/>5.54.1. Introduction<br/><br/>5.54.2. Brief History of Blood Substitute Research<br/><br/>5.54.3. Preparation Technologies for Blood Substitutes<br/><br/>5.54.4. The Application Prospect of Blood Substitutes<br/><br/>5.54.5. Problems with Current Blood Substitutes<br/><br/>5.54.6. Future Prospect<br/><br/>5.55. Blood Detoxication<br/><br/>Glossary<br/><br/>5.55.1. Introduction<br/><br/>5.55.2. Membrane Techniques<br/><br/>5.55.3. Adsorption Techniques<br/><br/>5.55.4. Combined Use of Both Membrane and Adsorption Techniques<br/><br/>5.55.5. Perspectives<br/><br/>5.56. Novel and Current Techniques to Produce Endotoxin-Free Dialysate in Dialysis Centers<br/><br/>Glossary<br/><br/>5.56.1. Introduction<br/><br/>5.56.2. Ceramic Membranes<br/><br/>5.56.3. Ceramic Membranes for Endotoxin Removal<br/><br/>5.56.4. Conclusions and Future Perspectives |
942 ## - ADDED ENTRY ELEMENTS (KOHA) | |
Koha item type | Reference Books |
Withdrawn status | Lost status | Damaged status | Not for loan | Collection Type | Home library | Current library | Shelving location | Date acquired | Full call number | Accession number | Date last seen | Koha item type |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Not For Loan | Reference Collection | Central Library, Sikkim University | Central Library, Sikkim University | Reference | 29/08/2016 | 660.6 MOO/C | P35153 | 23/09/2022 | Reference Books |