Annual plant review: the plant hormone ethylene/ (Record no. 180108)
[ view plain ]
000 -LEADER | |
---|---|
fixed length control field | 00343nam a2200121Ia 4500 |
040 ## - CATALOGING SOURCE | |
Transcribing agency | CUS |
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER | |
Classification number | 571.742 |
Item number | MCM/A |
245 #0 - TITLE STATEMENT | |
Title | Annual plant review: the plant hormone ethylene/ |
Statement of responsibility, etc. | Michael T. Mcmanus |
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT) | |
Place of publication, distribution, etc. | New York: |
Name of publisher, distributor, etc. | Wiley-blackwell, |
Date of publication, distribution, etc. | 2012. |
300 ## - PHYSICAL DESCRIPTION | |
Extent | 392 p. |
505 ## - FORMATTED CONTENTS NOTE | |
Formatted contents note | 1 100 Years of Ethylene - A Personal View 1<br/>Don Grierson<br/>1.1 Introduction 1<br/>1.2 Ethylene Biosynthesis 2<br/>1.3 Ethylene perception and signalling 7<br/>1.4 Differential responses to ethylene 9<br/>1.5 Ethylene and development 10<br/>1.6 Looking ahead 13<br/>Acknowledgements 14<br/>References 14<br/>2 Early Events in the Ethylene Biosynthetic Pathway - Regulation<br/>of the Pools of Methionine and S-Adenosylmethionine 19<br/>Katlmriua Bilrstenbinder and Mnrgret Saiiter<br/>2.1 Introduction 20<br/>2.2 The metabolism of Met and SAM 22<br/>2.3 Regulation of de novo Met synthesis 25<br/>2.4 Regulation of the SAM pool 27<br/>2.4.1 Regulation of SAMS genes by ethylene and of<br/>SAM enzyme activity by protein-S-nitrosylation 29<br/>2.5 The activated methyl cycle 30<br/>2.6 The S-methylmethionine cycle 32<br/>2.7 The methionine or Yang Cycle 35<br/>2.7.1 The Yang cycle in relation to polyamine and<br/>nicotianamine biosynthesis 39<br/>2.7.2 Regulation of the Yang Cycle in relation to<br/>ethylene synthesis 40<br/>2.8 Conclusions 42<br/>Acknowledgement 43<br/>References 44<br/>VII<br/>viii 01 Contents<br/>3 The Formation of ACC and Competition Between Polyamines<br/>and Ethylene for SAM 53<br/>Smadar Harpaz-Saad, Gyeong Mee Yoon, Autar K. Mattoo, and<br/>Joseph J. Kieber<br/>3.1 Introduction 53<br/>3.2 Identification and characterization of ACC synthase<br/>activity in plants 54<br/>3.2.1 Historical overview 54<br/>3.2.2 Purification and properties of the ACC synthase<br/>protein 56<br/>3.3 Analysis of ACC synthase at the transcriptional level 58<br/>3.3.1 Molecular cloning of ACC synthase genes 58<br/>3.3.2 Transcriptional regulation of the ACC synthase<br/>gene family 59<br/>3.4 Post-transcriptional regulation of ACS 62<br/>3.4.1 Identification and characterization of interactions<br/>with ETOl 62<br/>3.4.2 Regulation of ACS degradation 64<br/>3.5 Does ACC act as a signal? 65<br/>3.6 Biosynthesis<br/>and physiology of polyamines 67<br/>3.6.1 SAM is a substrate for polyamines 67<br/>3.6.2 Physiology of polyamine effects in vitro and in vivo 67<br/>3.6.3 Concurrent biosynthesis of ethylene and<br/>polyamines 70<br/>3.6.4 Do plant cells invoke a homeostatic regulation of<br/>SAM levels? 72<br/>Acknowledgements 72<br/>References 72<br/>4 The Fate of ACC in Higher Plants 83<br/>Sarah }. Dorling and Michael T. McManus<br/>4.1 Introduction 83<br/>4.2 History of the discovery of ACC oxidase as the<br/>ethylene-forming<br/>enzyme 84<br/>4.2.1 Early characterization of ACC oxidase 84<br/>4.2.2 Cloning of the ethylene-forming enzyme as an<br/>indicator of enzyme activity 85<br/>4.2.3 Initial biochemical demonstration of<br/>ethylene-forming enzyme activity in vitro 86<br/>4.3 Mechanism of the ACC oxidase-catalyzed reaction 86<br/>4.3.1 Investigation of the ACO reaction mechanism 87<br/>4.3.2 Metabolism of HCN 89<br/>4.3.3 Evidence of the conjugation of ACC 91<br/>4.4 Transcriptional regulation of ACC oxidase 92<br/>4.4.1<br/>ACO multi-gene families 92<br/>4.4.2 Differential expression of members of ACO<br/>multi-gene families in response to developmental<br/>Contents El ix<br/>and environmental stimuli 94<br/>4.4.3 Transcriptional regulation of gene expression 96<br/>4.4.4 Crosstalk between ethylene signalling elements<br/>and ACO gene expression 97<br/>4.5 Translational regulation of ACC oxidase 97<br/>4.6 Evidence that ACC oxidase acts as a control point in<br/>ethylene biosynthesis<br/>4.6.1 Cell-specific expression of ACC oxidase 102<br/>4.6.2 Differential expression of ACS and ACO genes 103<br/>4.7 Evolutionary aspects of ACC oxidase 104<br/>Acknowledgements ^05<br/>References ^05<br/>5 Perception of Ethylene by Plants - Ethylene Receptors 117<br/>Brad M. Binder, Caren Chang and G. Eric Schaller<br/>5.1 Historical overview<br/>5.2 Subfamilies of ethylene receptors and their evolutionary<br/>history<br/>5.3 Ethylene binding<br/>5.3.1 Requirements for a metal cofactor 123<br/>5.3.2 Characterization of the ethylene-binding pocket<br/>and signal transduction 124<br/>5.4 Signal output from the receptors 126<br/>5.5 Overlapping and non-overlapping roles for the receptor<br/>isoforms in controlling various phenotypes 128<br/>5.6 Post-translational regulation of the receptors 131<br/>5.6.1 Clustering of receptors 131<br/>562 Ethylene-mediated degradation of receptors 132<br/>563 Regulatory role of REVERSION-TO-ETHYLENE<br/>SENSITIVITY (RTE1)/GREEN-RIPE (GR) 133<br/>5.6.4 Other proteins that interact with the ethylene<br/>receptors 134<br/>5.7 Conclusions and model 135<br/>Acknowledgements 137<br/>References 1^^<br/>6 Ethylene Signalling: the CTRl Protein Kinase 147<br/>Silin Zhong And Caren Chang<br/>6.1 Introduction 1"^^<br/>6.2 Discovery of CTRl, a negative regulator of ethylene signal<br/>transduction 148<br/>6.2.1 Isolation of the Arabidopsis CTRl mutant 148<br/>6.2.2 CTRl mutant phenotypes in Arabidopsis 149<br/>X n Contents<br/>6.2.3 Placement of CTRl in the ethylene-response<br/>pathway 150<br/>6.3 CTRl Encodes a<br/>serine/threonine protein kinase 151<br/>6.3.1 Molecular cloning and sequence analysis of the<br/>Arabidopsis CTRl gene 151<br/>6.3.2 CTRl biochemical activity 152<br/>6.4 The CTR2 gene family 153<br/>6.4.1 The CTR multi-gene family in tomato 153<br/>6.4.2 Functional roles of tomato CTR genes 153<br/>6.4.3 Transcriptional regulation of CTR-like genes 155<br/>6.5 Regulation of CTRl activity 156<br/>6.5.1 Physical association of CTRl with ethylene<br/>receptors 158<br/>6.5.2 Membrane localization of CTRl 159<br/>6.5.3 An inhibitory role for the CTRl N-terminus? 159<br/>6.5.4 Other factors that potentially interact with and<br/>regulate CTRl activity 160<br/>6.6 Elusive targets of CTRl signalling 161<br/>6.7 CTRl crosstalk and interactions with other signals 162<br/>6.8 Conclusions 163<br/>Acknowledgements 164<br/>References 164<br/>7 EIN2 and EIN3 in Ethylene Signalling 169<br/>Young-HeeCho, Sangho Lee and Snug-Dong Yoo<br/>7.1 Introduction 169<br/>7.2 Overview of ethylene signalling and EIN2 and EIN3 172<br/>7.3 Genetic identification and biochemical regulation of EIN2 173<br/>7.4 EIN3 regulation in ethylene signalling 174<br/>7.4.1 Genetic identification<br/>and biochemical regulation<br/>ofEIN3 174<br/>7.4.2 Structural and functional analysis of ein3 function 178<br/>7.4.3 Function of EIN3 as transcription activator 180<br/>7.5 Functions of ERPl and other ERFs in ethylene signalling 181<br/>7.6 Future directions 183<br/>Acknowledgements 184<br/>References 184<br/>8 Ethylene in Seed Development, Dormancy and Germination 189<br/>Reimta Bogatekand Agnieszka Gniazdoivska<br/>8.1 Introduction 189<br/>8.2 Ethylene in seed embryogenesis 192<br/>8.2.1 Ethylene biosynthesis<br/>during zygotic<br/>embryogenesis 192<br/>Contents • xi<br/>8.2.2 Ethylene involvement in the regulation of seed<br/>morphology 194<br/>8.3 Ethylene in seed<br/>dormancy and germination 194<br/>8.3.1 Ethylene biosynthesis<br/>during dormancy release<br/>and germination 194<br/>8.3.2 The role of ethylene in seed heterogeneity 199<br/>8.4 Ethylene interactions with other plant hormones in the<br/>regulation of seed dormancy and germination 199<br/>8.5 Ethylene interactions with ROS in the regulation of seed<br/>dormancy and germination 202<br/>8.6 Ethylene interactions with other small gaseous signalling<br/>molecules (NO, HCN) in the regulation of seed dormancy<br/>and germination 204<br/>8.7 Concluding remarks . 207<br/>Acknowledgements 209<br/>References 209<br/>9 The Role of Ethylene in Plant Growth and Development 219<br/>Filip Vandenbiissche and Dotiiinique Van Der Straeten<br/>9.1 Introduction 219<br/>9.2 Design of root architecture 220<br/>9.3 Regulation of hypocotyl growth 225<br/>9.4 Shoot architecture and orientation: post-seedling growth 229<br/>9.4.1 Inhibition of growth by ethylene 229<br/>9.4.2 Stimulation of growth by ethylene 229<br/>9.4.3 Shoot gravitropism 231<br/>9.4.4 Control of stomatal density and aperture 231<br/>9.4.5 Activity of the<br/>shoot apical meristem 231<br/>9.5 Floral transition 232<br/>9.6 Determination of sexual forms of flowers 232<br/>9.7 Ethylene effects on growth controlling mechanisms 233<br/>9.8 Conclusions 234<br/>Acknowledgements 234<br/>References 234<br/>10 Ethylene and Cell Separation Processes 243<br/>Zinnia H. Gonzalez-Carranza vnd Jeremy A. Roberts<br/>10.1 Introduction 243<br/>10.2 Overview of the cell separation process 244<br/>10.2.1 Abscission 245<br/>10.2.2 Dehiscence 249<br/>10.2.3 Aerenchyma formation 251<br/>10.2.4 Stomata development and hydathode formation 252<br/>10.2.5 Root cap cell sloughing and lateral root emergence 254<br/>10.2.6 Xylem differentiation 257<br/>xii • Contents<br/>10.3 Transcription analyses during cell separation 258<br/>10.4 Relationship between ethyiene and other hormones in the<br/>regulation of cell separation 259<br/>10.4.1 Ethyene and lAA 259<br/>10.4.2 Ethyiene and jasmonic acid 260<br/>10.4.3 Ethyiene and abscisic acid 261<br/>10.5 Ethyiene and signalling systems during cell separation 261<br/>10.5.1 Role of IDA, IDA-like, HAESA and HAESA-like<br/>genes 261<br/>10.5.2 MAP kinases 262<br/>10.5.3 Nevershed 262<br/>10.6 Application of knowledge of abscission to crops of<br/>horticultural and agricultural importance 262<br/>10.7 Conclusions and future perspectives 263<br/>References 265<br/>11 Ethyiene and Fruit Ripening 275<br/>Jean-Claude Pech, Ediiardo Purgatto, Mondher Bouzaxjen and<br/>Alain Latche<br/>11.1 Introduction 276<br/>11.2 Regulation of ethyiene production during ripening of<br/>climacteric fruit 276<br/>11.2.1 Regulation of ethyiene biosynthesis genes during<br/>the System 1 to System2 transition 277<br/>11.2.2 ACS genealleles are major determinants of<br/>ethyiene biosynthesis and shelf-life of climacteric<br/>fruit 280<br/>11.2.3 Geneticdeterminism of the climacteric character 281<br/>11.3 Transcriptional control of ethyiene biosjmthesis genes 282<br/>11.4 Role of ethyienein ripening of non-climacteric fruit 283<br/>11.5 Manipulation of ethyiene biosynthesis and ripening 284<br/>11.6 Ethylene-dependent and -independent aspects of<br/>climacteric ripening 286<br/>11.7 Ethyiene perception and transduction effects in fruit<br/>ripening ' 288<br/>11.7.1 Ethyiene perception 288<br/>11.7.2 Chemical control ofthe post-harvest ethyiene<br/>response in fruit ripening 289<br/>11.7.3 Ethyiene signal transduction 290<br/>11.7.4 The transcriptional cascade leading to the<br/>regulation of ethylene-responsiveand<br/>ripening-related genes 291<br/>11.8 Hormonal crosstalk in fruit ripening 292<br/>11.8.1 Ethyiene and abscisic acid 293<br/>Contents n xiii<br/>11.8.2 Ethylene and jasmonate 293<br/>11.8.3 Ethylene<br/>and auxin 294<br/>11.8.4 Ethylene and the gibberellins 295<br/>11.9 Conclusions and future directions 295<br/>Acknowledgements 296<br/>References 296<br/>12 Ethylene and Senescence Processes 305<br/>Laura E. Graham,Jos H.M. Schippers, Paul<br/>P. Dijkzvel and Carol<br/>Wagstaff<br/>12.1 Introduction 306<br/>12.2 Overview of ethylene-mediated senescence in different<br/>plant organs 306<br/>12.2.1 Leaf senescence 306<br/>12.2.2 Pod senescence 310<br/>12.2.3 Petal senescence 312<br/>12.3 Transcriptional regulation of ethylene-mediated<br/>senescence processes 314<br/>12.3.1 Global regulation 314<br/>12.3.2 Transcription factors and signalling pathways 315<br/>12.4 Interaction of ethylene with other hormones in relation to<br/>senescence 323<br/>12.5 The importance of ethylene-mediated senescence in<br/>post-harvest biology 325<br/>12.5.1 Post-harvest factors affected by ethylene 325<br/>12.5.2 Ways of controlling ethylene-related post-harvest<br/>losses 327<br/>12.5.2.1 Packaging 327<br/>12.5.2.2 1-Methylcyclopropene 328<br/>12.6 Conclusions<br/>and future perspectives 329<br/>References 329<br/>13 Ethylene: Multi-Tasker in Plant-Attacker Interactions 343<br/>Sjoerd Van der Ent and CorneM.J. Pieterse<br/>13.1 Introduction 344<br/>13.2 Hormones in plant defence signalling 346<br/>13.2.1 Hormones as defence regulators 346<br/>13.2.2 Salicylic acid 347<br/>13.2.3 Jasmonic acid 347<br/>13.2.4 Ethylene 348<br/>13.3 Implications of ethylene in basal defence and disease<br/>susceptibility 348<br/>13.3.1 Studies<br/>with Arabidopsis thaliana 348<br/>13.3.2 Studies with tobacco 350<br/>xiv • Contents<br/>13.3.3 Studies with tomato 351<br/>13.3.4 Studies with soybean 352<br/>13.3.5<br/>Other plant species 352<br/>13.4 Implications of ethylene in systemic immune responses 353<br/>13.4.1 Systemic induced immunity 353<br/>13.4.2 Rhizobacteria-mediated ISR 354<br/>13.4.3 Genetic dissection of the ISR pathway in<br/>Arabidopsis 356<br/>13.4.4 Priming for enhanced JA/ethylene-dependent<br/>defences 358<br/>13.4.5 Molecular mechanisms of priming for enhanced<br/>defence 360<br/>13.4.6 Costs and benefits of priming for enhanced<br/>defence 362<br/>13.5 Ethylene modulates crosstalk among defence-signalling<br/>pathways 362<br/>13.5.1 Crosstalk in defence signalling 362<br/>13.5.2 Interplay among SA,JA and ethylene signalling 363<br/>13.5.3 Ethylene: an important modulator of<br/>defence-signalling pathways 365<br/>13.6 Concluding remarks 365<br/>Acknowledgements 366<br/>References 367<br/>Index 379<br/>First 8-page color plate section (between pages 168 and 169)<br/>Second 8-page color plate section (between<br/>pages 360 and 361) |
942 ## - ADDED ENTRY ELEMENTS (KOHA) | |
Koha item type | General Books |
Withdrawn status | Lost status | Damaged status | Not for loan | Home library | Current library | Shelving location | Date acquired | Full call number | Accession number | Date last seen | Koha item type |
---|---|---|---|---|---|---|---|---|---|---|---|
Central Library, Sikkim University | Central Library, Sikkim University | General Book Section | 29/08/2016 | 571.742 MCM/A | P35120 | 29/08/2016 | General Books |