Annual plant review: the plant hormone ethylene/ (Record no. 180108)

MARC details
000 -LEADER
fixed length control field 00343nam a2200121Ia 4500
040 ## - CATALOGING SOURCE
Transcribing agency CUS
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 571.742
Item number MCM/A
245 #0 - TITLE STATEMENT
Title Annual plant review: the plant hormone ethylene/
Statement of responsibility, etc. Michael T. Mcmanus
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT)
Place of publication, distribution, etc. New York:
Name of publisher, distributor, etc. Wiley-blackwell,
Date of publication, distribution, etc. 2012.
300 ## - PHYSICAL DESCRIPTION
Extent 392 p.
505 ## - FORMATTED CONTENTS NOTE
Formatted contents note 1 100 Years of Ethylene - A Personal View 1<br/>Don Grierson<br/>1.1 Introduction 1<br/>1.2 Ethylene Biosynthesis 2<br/>1.3 Ethylene perception and signalling 7<br/>1.4 Differential responses to ethylene 9<br/>1.5 Ethylene and development 10<br/>1.6 Looking ahead 13<br/>Acknowledgements 14<br/>References 14<br/>2 Early Events in the Ethylene Biosynthetic Pathway - Regulation<br/>of the Pools of Methionine and S-Adenosylmethionine 19<br/>Katlmriua Bilrstenbinder and Mnrgret Saiiter<br/>2.1 Introduction 20<br/>2.2 The metabolism of Met and SAM 22<br/>2.3 Regulation of de novo Met synthesis 25<br/>2.4 Regulation of the SAM pool 27<br/>2.4.1 Regulation of SAMS genes by ethylene and of<br/>SAM enzyme activity by protein-S-nitrosylation 29<br/>2.5 The activated methyl cycle 30<br/>2.6 The S-methylmethionine cycle 32<br/>2.7 The methionine or Yang Cycle 35<br/>2.7.1 The Yang cycle in relation to polyamine and<br/>nicotianamine biosynthesis 39<br/>2.7.2 Regulation of the Yang Cycle in relation to<br/>ethylene synthesis 40<br/>2.8 Conclusions 42<br/>Acknowledgement 43<br/>References 44<br/>VII<br/>viii 01 Contents<br/>3 The Formation of ACC and Competition Between Polyamines<br/>and Ethylene for SAM 53<br/>Smadar Harpaz-Saad, Gyeong Mee Yoon, Autar K. Mattoo, and<br/>Joseph J. Kieber<br/>3.1 Introduction 53<br/>3.2 Identification and characterization of ACC synthase<br/>activity in plants 54<br/>3.2.1 Historical overview 54<br/>3.2.2 Purification and properties of the ACC synthase<br/>protein 56<br/>3.3 Analysis of ACC synthase at the transcriptional level 58<br/>3.3.1 Molecular cloning of ACC synthase genes 58<br/>3.3.2 Transcriptional regulation of the ACC synthase<br/>gene family 59<br/>3.4 Post-transcriptional regulation of ACS 62<br/>3.4.1 Identification and characterization of interactions<br/>with ETOl 62<br/>3.4.2 Regulation of ACS degradation 64<br/>3.5 Does ACC act as a signal? 65<br/>3.6 Biosynthesis<br/>and physiology of polyamines 67<br/>3.6.1 SAM is a substrate for polyamines 67<br/>3.6.2 Physiology of polyamine effects in vitro and in vivo 67<br/>3.6.3 Concurrent biosynthesis of ethylene and<br/>polyamines 70<br/>3.6.4 Do plant cells invoke a homeostatic regulation of<br/>SAM levels? 72<br/>Acknowledgements 72<br/>References 72<br/>4 The Fate of ACC in Higher Plants 83<br/>Sarah }. Dorling and Michael T. McManus<br/>4.1 Introduction 83<br/>4.2 History of the discovery of ACC oxidase as the<br/>ethylene-forming<br/>enzyme 84<br/>4.2.1 Early characterization of ACC oxidase 84<br/>4.2.2 Cloning of the ethylene-forming enzyme as an<br/>indicator of enzyme activity 85<br/>4.2.3 Initial biochemical demonstration of<br/>ethylene-forming enzyme activity in vitro 86<br/>4.3 Mechanism of the ACC oxidase-catalyzed reaction 86<br/>4.3.1 Investigation of the ACO reaction mechanism 87<br/>4.3.2 Metabolism of HCN 89<br/>4.3.3 Evidence of the conjugation of ACC 91<br/>4.4 Transcriptional regulation of ACC oxidase 92<br/>4.4.1<br/>ACO multi-gene families 92<br/>4.4.2 Differential expression of members of ACO<br/>multi-gene families in response to developmental<br/>Contents El ix<br/>and environmental stimuli 94<br/>4.4.3 Transcriptional regulation of gene expression 96<br/>4.4.4 Crosstalk between ethylene signalling elements<br/>and ACO gene expression 97<br/>4.5 Translational regulation of ACC oxidase 97<br/>4.6 Evidence that ACC oxidase acts as a control point in<br/>ethylene biosynthesis<br/>4.6.1 Cell-specific expression of ACC oxidase 102<br/>4.6.2 Differential expression of ACS and ACO genes 103<br/>4.7 Evolutionary aspects of ACC oxidase 104<br/>Acknowledgements ^05<br/>References ^05<br/>5 Perception of Ethylene by Plants - Ethylene Receptors 117<br/>Brad M. Binder, Caren Chang and G. Eric Schaller<br/>5.1 Historical overview<br/>5.2 Subfamilies of ethylene receptors and their evolutionary<br/>history<br/>5.3 Ethylene binding<br/>5.3.1 Requirements for a metal cofactor 123<br/>5.3.2 Characterization of the ethylene-binding pocket<br/>and signal transduction 124<br/>5.4 Signal output from the receptors 126<br/>5.5 Overlapping and non-overlapping roles for the receptor<br/>isoforms in controlling various phenotypes 128<br/>5.6 Post-translational regulation of the receptors 131<br/>5.6.1 Clustering of receptors 131<br/>562 Ethylene-mediated degradation of receptors 132<br/>563 Regulatory role of REVERSION-TO-ETHYLENE<br/>SENSITIVITY (RTE1)/GREEN-RIPE (GR) 133<br/>5.6.4 Other proteins that interact with the ethylene<br/>receptors 134<br/>5.7 Conclusions and model 135<br/>Acknowledgements 137<br/>References 1^^<br/>6 Ethylene Signalling: the CTRl Protein Kinase 147<br/>Silin Zhong And Caren Chang<br/>6.1 Introduction 1"^^<br/>6.2 Discovery of CTRl, a negative regulator of ethylene signal<br/>transduction 148<br/>6.2.1 Isolation of the Arabidopsis CTRl mutant 148<br/>6.2.2 CTRl mutant phenotypes in Arabidopsis 149<br/>X n Contents<br/>6.2.3 Placement of CTRl in the ethylene-response<br/>pathway 150<br/>6.3 CTRl Encodes a<br/>serine/threonine protein kinase 151<br/>6.3.1 Molecular cloning and sequence analysis of the<br/>Arabidopsis CTRl gene 151<br/>6.3.2 CTRl biochemical activity 152<br/>6.4 The CTR2 gene family 153<br/>6.4.1 The CTR multi-gene family in tomato 153<br/>6.4.2 Functional roles of tomato CTR genes 153<br/>6.4.3 Transcriptional regulation of CTR-like genes 155<br/>6.5 Regulation of CTRl activity 156<br/>6.5.1 Physical association of CTRl with ethylene<br/>receptors 158<br/>6.5.2 Membrane localization of CTRl 159<br/>6.5.3 An inhibitory role for the CTRl N-terminus? 159<br/>6.5.4 Other factors that potentially interact with and<br/>regulate CTRl activity 160<br/>6.6 Elusive targets of CTRl signalling 161<br/>6.7 CTRl crosstalk and interactions with other signals 162<br/>6.8 Conclusions 163<br/>Acknowledgements 164<br/>References 164<br/>7 EIN2 and EIN3 in Ethylene Signalling 169<br/>Young-HeeCho, Sangho Lee and Snug-Dong Yoo<br/>7.1 Introduction 169<br/>7.2 Overview of ethylene signalling and EIN2 and EIN3 172<br/>7.3 Genetic identification and biochemical regulation of EIN2 173<br/>7.4 EIN3 regulation in ethylene signalling 174<br/>7.4.1 Genetic identification<br/>and biochemical regulation<br/>ofEIN3 174<br/>7.4.2 Structural and functional analysis of ein3 function 178<br/>7.4.3 Function of EIN3 as transcription activator 180<br/>7.5 Functions of ERPl and other ERFs in ethylene signalling 181<br/>7.6 Future directions 183<br/>Acknowledgements 184<br/>References 184<br/>8 Ethylene in Seed Development, Dormancy and Germination 189<br/>Reimta Bogatekand Agnieszka Gniazdoivska<br/>8.1 Introduction 189<br/>8.2 Ethylene in seed embryogenesis 192<br/>8.2.1 Ethylene biosynthesis<br/>during zygotic<br/>embryogenesis 192<br/>Contents • xi<br/>8.2.2 Ethylene involvement in the regulation of seed<br/>morphology 194<br/>8.3 Ethylene in seed<br/>dormancy and germination 194<br/>8.3.1 Ethylene biosynthesis<br/>during dormancy release<br/>and germination 194<br/>8.3.2 The role of ethylene in seed heterogeneity 199<br/>8.4 Ethylene interactions with other plant hormones in the<br/>regulation of seed dormancy and germination 199<br/>8.5 Ethylene interactions with ROS in the regulation of seed<br/>dormancy and germination 202<br/>8.6 Ethylene interactions with other small gaseous signalling<br/>molecules (NO, HCN) in the regulation of seed dormancy<br/>and germination 204<br/>8.7 Concluding remarks . 207<br/>Acknowledgements 209<br/>References 209<br/>9 The Role of Ethylene in Plant Growth and Development 219<br/>Filip Vandenbiissche and Dotiiinique Van Der Straeten<br/>9.1 Introduction 219<br/>9.2 Design of root architecture 220<br/>9.3 Regulation of hypocotyl growth 225<br/>9.4 Shoot architecture and orientation: post-seedling growth 229<br/>9.4.1 Inhibition of growth by ethylene 229<br/>9.4.2 Stimulation of growth by ethylene 229<br/>9.4.3 Shoot gravitropism 231<br/>9.4.4 Control of stomatal density and aperture 231<br/>9.4.5 Activity of the<br/>shoot apical meristem 231<br/>9.5 Floral transition 232<br/>9.6 Determination of sexual forms of flowers 232<br/>9.7 Ethylene effects on growth controlling mechanisms 233<br/>9.8 Conclusions 234<br/>Acknowledgements 234<br/>References 234<br/>10 Ethylene and Cell Separation Processes 243<br/>Zinnia H. Gonzalez-Carranza vnd Jeremy A. Roberts<br/>10.1 Introduction 243<br/>10.2 Overview of the cell separation process 244<br/>10.2.1 Abscission 245<br/>10.2.2 Dehiscence 249<br/>10.2.3 Aerenchyma formation 251<br/>10.2.4 Stomata development and hydathode formation 252<br/>10.2.5 Root cap cell sloughing and lateral root emergence 254<br/>10.2.6 Xylem differentiation 257<br/>xii • Contents<br/>10.3 Transcription analyses during cell separation 258<br/>10.4 Relationship between ethyiene and other hormones in the<br/>regulation of cell separation 259<br/>10.4.1 Ethyene and lAA 259<br/>10.4.2 Ethyiene and jasmonic acid 260<br/>10.4.3 Ethyiene and abscisic acid 261<br/>10.5 Ethyiene and signalling systems during cell separation 261<br/>10.5.1 Role of IDA, IDA-like, HAESA and HAESA-like<br/>genes 261<br/>10.5.2 MAP kinases 262<br/>10.5.3 Nevershed 262<br/>10.6 Application of knowledge of abscission to crops of<br/>horticultural and agricultural importance 262<br/>10.7 Conclusions and future perspectives 263<br/>References 265<br/>11 Ethyiene and Fruit Ripening 275<br/>Jean-Claude Pech, Ediiardo Purgatto, Mondher Bouzaxjen and<br/>Alain Latche<br/>11.1 Introduction 276<br/>11.2 Regulation of ethyiene production during ripening of<br/>climacteric fruit 276<br/>11.2.1 Regulation of ethyiene biosynthesis genes during<br/>the System 1 to System2 transition 277<br/>11.2.2 ACS genealleles are major determinants of<br/>ethyiene biosynthesis and shelf-life of climacteric<br/>fruit 280<br/>11.2.3 Geneticdeterminism of the climacteric character 281<br/>11.3 Transcriptional control of ethyiene biosjmthesis genes 282<br/>11.4 Role of ethyienein ripening of non-climacteric fruit 283<br/>11.5 Manipulation of ethyiene biosynthesis and ripening 284<br/>11.6 Ethylene-dependent and -independent aspects of<br/>climacteric ripening 286<br/>11.7 Ethyiene perception and transduction effects in fruit<br/>ripening ' 288<br/>11.7.1 Ethyiene perception 288<br/>11.7.2 Chemical control ofthe post-harvest ethyiene<br/>response in fruit ripening 289<br/>11.7.3 Ethyiene signal transduction 290<br/>11.7.4 The transcriptional cascade leading to the<br/>regulation of ethylene-responsiveand<br/>ripening-related genes 291<br/>11.8 Hormonal crosstalk in fruit ripening 292<br/>11.8.1 Ethyiene and abscisic acid 293<br/>Contents n xiii<br/>11.8.2 Ethylene and jasmonate 293<br/>11.8.3 Ethylene<br/>and auxin 294<br/>11.8.4 Ethylene and the gibberellins 295<br/>11.9 Conclusions and future directions 295<br/>Acknowledgements 296<br/>References 296<br/>12 Ethylene and Senescence Processes 305<br/>Laura E. Graham,Jos H.M. Schippers, Paul<br/>P. Dijkzvel and Carol<br/>Wagstaff<br/>12.1 Introduction 306<br/>12.2 Overview of ethylene-mediated senescence in different<br/>plant organs 306<br/>12.2.1 Leaf senescence 306<br/>12.2.2 Pod senescence 310<br/>12.2.3 Petal senescence 312<br/>12.3 Transcriptional regulation of ethylene-mediated<br/>senescence processes 314<br/>12.3.1 Global regulation 314<br/>12.3.2 Transcription factors and signalling pathways 315<br/>12.4 Interaction of ethylene with other hormones in relation to<br/>senescence 323<br/>12.5 The importance of ethylene-mediated senescence in<br/>post-harvest biology 325<br/>12.5.1 Post-harvest factors affected by ethylene 325<br/>12.5.2 Ways of controlling ethylene-related post-harvest<br/>losses 327<br/>12.5.2.1 Packaging 327<br/>12.5.2.2 1-Methylcyclopropene 328<br/>12.6 Conclusions<br/>and future perspectives 329<br/>References 329<br/>13 Ethylene: Multi-Tasker in Plant-Attacker Interactions 343<br/>Sjoerd Van der Ent and CorneM.J. Pieterse<br/>13.1 Introduction 344<br/>13.2 Hormones in plant defence signalling 346<br/>13.2.1 Hormones as defence regulators 346<br/>13.2.2 Salicylic acid 347<br/>13.2.3 Jasmonic acid 347<br/>13.2.4 Ethylene 348<br/>13.3 Implications of ethylene in basal defence and disease<br/>susceptibility 348<br/>13.3.1 Studies<br/>with Arabidopsis thaliana 348<br/>13.3.2 Studies with tobacco 350<br/>xiv • Contents<br/>13.3.3 Studies with tomato 351<br/>13.3.4 Studies with soybean 352<br/>13.3.5<br/>Other plant species 352<br/>13.4 Implications of ethylene in systemic immune responses 353<br/>13.4.1 Systemic induced immunity 353<br/>13.4.2 Rhizobacteria-mediated ISR 354<br/>13.4.3 Genetic dissection of the ISR pathway in<br/>Arabidopsis 356<br/>13.4.4 Priming for enhanced JA/ethylene-dependent<br/>defences 358<br/>13.4.5 Molecular mechanisms of priming for enhanced<br/>defence 360<br/>13.4.6 Costs and benefits of priming for enhanced<br/>defence 362<br/>13.5 Ethylene modulates crosstalk among defence-signalling<br/>pathways 362<br/>13.5.1 Crosstalk in defence signalling 362<br/>13.5.2 Interplay among SA,JA and ethylene signalling 363<br/>13.5.3 Ethylene: an important modulator of<br/>defence-signalling pathways 365<br/>13.6 Concluding remarks 365<br/>Acknowledgements 366<br/>References 367<br/>Index 379<br/>First 8-page color plate section (between pages 168 and 169)<br/>Second 8-page color plate section (between<br/>pages 360 and 361)
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type General Books
Holdings
Withdrawn status Lost status Damaged status Not for loan Home library Current library Shelving location Date acquired Full call number Accession number Date last seen Koha item type
        Central Library, Sikkim University Central Library, Sikkim University General Book Section 29/08/2016 571.742 MCM/A P35120 29/08/2016 General Books
SIKKIM UNIVERSITY
University Portal | Contact Librarian | Library Portal

Powered by Koha