Programming for mathematicians (Universitext)/ (Record no. 179854)
[ view plain ]
000 -LEADER | |
---|---|
fixed length control field | 00371nam a2200145Ia 4500 |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER | |
International Standard Book Number | 354066422X |
040 ## - CATALOGING SOURCE | |
Transcribing agency | CUS |
082 ## - DEWEY DECIMAL CLASSIFICATION NUMBER | |
Classification number | 519.7 |
Item number | SER/P |
100 ## - MAIN ENTRY--PERSONAL NAME | |
Personal name | Seroul, Raymond |
245 #0 - TITLE STATEMENT | |
Title | Programming for mathematicians (Universitext)/ |
Statement of responsibility, etc. | Raymond Seroul |
250 ## - EDITION STATEMENT | |
Edition statement | 2000 |
260 ## - PUBLICATION, DISTRIBUTION, ETC. (IMPRINT) | |
Place of publication, distribution, etc. | New York: |
Name of publisher, distributor, etc. | Springer, |
Date of publication, distribution, etc. | 2000. |
300 ## - PHYSICAL DESCRIPTION | |
Extent | 432p. |
505 ## - FORMATTED CONTENTS NOTE | |
Formatted contents note | <br/>1. Programming Proverbs 1<br/>1.1. Above all, no tricks! 1<br/>1.2. Do not chewing gum while climbing stairs 2<br/>1.3. Name that which you still don't know 2<br/>1.4. Tomorrow, things will be better; the day after, better still<br/>... 2<br/>1.5. Never execute an order before it is given 3<br/>1.6. Document today to avoid tears tomorrow 3<br/>1.7. Descartes' Discourse on the Method 3<br/>2. Review of Arithmetic 5<br/>2.1. Euclidean Division 5<br/>2.2. Numeration Systems 6<br/>2.3. Prime Numbers 7<br/>2.3.1. The number of primes smaller than a given real number . 8<br/>2.4. The Greatest Common Divisor 9<br/>2.4.1. The Bezout Theorem 10<br/>2.4.2. Gauss's Lemma 10<br/>2.5. Congruences 11<br/>2.6. The Chinese Remainder Theorem 12<br/>2.7. The Euler phi Function 14<br/>2.8. The Theorems of Fermat and Euler 15<br/>2.9. Wilson's Theorem 16<br/>2.10. Quadratic Residues 17<br/>2.11. Prime Number and Sum of Two Squares 18<br/>2.12. The Moebius Function 19<br/>2.13. The Fibonacci Numbers 21<br/>2.14. Reasoning by Induction 22<br/>2.15. Solutions of the Exercises 25<br/>3. An Algorithmic Description Language 29<br/>3.1. Identifiers 30<br/>3.2. Arithmetic Expressions 31<br/>3.2.1. Numbers 31<br/>3.2.2. Operations 31<br/>Table of Contents<br/>3.2.3. Arrays 32<br/>3.2.4. Function calls and parentheses 32<br/>3.3. Boolean Expressions 32<br/>3.4. Statements and their Syntax 33<br/>3.4.1. Assignments 34<br/>3.4.2. Conditionals 34<br/>3.4.3. For loops 35<br/>3.4.4. While loops 35<br/>3.4.5. Repeat loops 35<br/>3.4.6. Sequences of statements 36<br/>3.4.7. Blocks of statements 36<br/>3.4.8. Complex statements 37<br/>3.4.9. Layout on page and control<br/>of syntax 38<br/>3.4.10. To what does the else belong? 40<br/>3.4.11. Semicolons: some classical errors 40<br/>3.5. The Semantics of Statements 42<br/>3.5.1. Assignments 42<br/>3.5.2. Conditionals 42<br/>3.5.3. First translations 43<br/>3.5.4. The boustrophedon order 45<br/>3.5.5. The for loop 47<br/>3.5.6. The while loop 48<br/>3.5.7. The repeat loop 50<br/>3.5.8. Embedded loops 51<br/>3.6. Which Loop to Choose? 51<br/>3.6.1. Choosing a for loop 52<br/>3.6.2. Choosing a while loop 52<br/>3.6.3. Choosing a repeat loop 52<br/>3.6.4. Inspecting entrances and exits 52<br/>3.6.5. Loops with accidents 54<br/>3.6.6. Gaussian elimination 55<br/>3.6.7. How to grab data 56<br/>4. How to Create an Algorithm 59<br/>4.1. The Trace of an Algorithm 59<br/>4.2. First Method: Recycling Known Code 60<br/>4.2.1. Postage stamps 60<br/>4.2.2. How to determine whether a postage is realizable<br/>... 61<br/>4.2.3. Calculating the threshold value 62<br/>4.3. Second Method: Using Sequences 64<br/>4.3.1. Creation of a simple algorithm 66<br/>4.3.2. The exponential series 67<br/>4.3.3. Decomposition into prime factors 69<br/>4.3.4. The least divisor function 71<br/>4.3.5. Cardinality of an intersection 71<br/>Table of Contents xi<br/>4.3.6. The CORDIC Algorithm 74<br/>4.4. Third Method: Deferred Writing 78<br/>4.4.1. Calculating two bizarre functions 80<br/>4.4.2. Storage<br/>of the first N prime numbers 81<br/>4.4.3. Last recommendations 84<br/>4.5. How to Prove an Algorithm 85<br/>4.5.1. Crashes 85<br/>4.5.2. Infinite loops 85<br/>4.5.3. Calculating the CCD of two numbers 86<br/>4.5.4. A more complicated example 86<br/>4.5.5. The validity of a result furnished by a loop 87<br/>4.6. Solutions of the Exercises 88<br/>5. Algorithms and Classical Constructions 91<br/>5.1. Exchanging the Contents of Two Variables 91<br/>5.2. Diverse Sums 92<br/>5.2.1. A very important convention 92<br/>5.2.2. Double sums 93<br/>5.2.3. Sums with exceptions 94<br/>5.3. Searching for a Maximum 95<br/>5.4. Solving a Triangular Cramer System 96<br/>5.5. Rapid Calculation<br/>of Powers 97<br/>5.6. Calculation of the Fibonacci Numbers 98<br/>5.7. The Notion of a Stack 99<br/>5.8. Linear Traversal of a Finite Set 101<br/>5.9. The Lexicographic Order 102<br/>5.9.1. Words of fixed length 102<br/>5.9.2. Words<br/>of variable length 104<br/>5.10. Solutions to the Exercises 105<br/>6. The Pascal Language 109<br/>6.1. Storage of the Usual Objects 109<br/>6.2. Integer Arithmetic in Pascal 110<br/>6.2.1. Storage of integers in Pascal 110<br/>6.3. Arrays in Pascal 113<br/>6.4. Declaration<br/>of an Array 114<br/>6.5. Product Sets and Types 115<br/>6.5.1. Product of equal sets 115<br/>6.5.2. Product<br/>of unequal sets 116<br/>6.5.3. Composite types 116<br/>6.6. The Role of Constants 117<br/>6.7. Litter 119<br/>6.8. Procedures 119<br/>6.8.1. The declarative part of a procedure 120<br/>xii fable of Contents<br/>6.8.2. Procedure calls 121<br/>6.8.3. Communication of a procedure with the exterior ... 122<br/>6.9. Visibility of the Variables in a Procedure 124<br/>6.10. Context Effects 125<br/>6.10.1. Functions 127<br/>6.10.2. Procedure or function? 128<br/>6.11. Procedures: What the Program Seems To Do 129<br/>6.11.1. Using the model 133<br/>6.12. Solutions of the Exercises 134<br/>7. How to Write a Program 135<br/>7.1. Inverse of an Order 4 Matrix 135<br/>7.1.1. The problem 136<br/>7.1.2. Theoretical study 136<br/>7.1.3. Writing the program 138<br/>7.1.4. The function det 140<br/>7.1.5. How to type a program 143<br/>7.2. Characteristic Polynomial<br/>of a Matrix 144<br/>7.2.1. The program Leverrier 147<br/>7.3. How to Write a Program 152<br/>7.4. A Poorly Written Procedure 156<br/>8. The Integers 159<br/>8.1. The Euclidean Algorithm 159<br/>8.1.1. Complexity of the Euclidean algorithm 160<br/>8.2. The Blankinship Algorithm 161<br/>8.3. Perfect Numbers 163<br/>8.4. The Lowest Divisor Function 165<br/>8.5. The Moebius Function 167<br/>8.6. The Sieve of Eratosthenes 169<br/>8.6.1. Formulation of the algorithm 171<br/>8.6.2. Transforming the algorithm to a program 172<br/>8.7. The Function pi(x) 175<br/>8.7.1. Legendre's formula 175<br/>8.7.2. Implementation of Legendre's formula 178<br/>8.7.3. Meissel's formula 179<br/>8.8. Egyptian Fractions 181<br/>8.8.1. The program 183<br/>8.8.2. Numerical results 186<br/>8.9. Operations on Large Integers 187<br/>8.9.1. Addition 187<br/>8.9.2. Subtraction 188<br/>8.9.3. Multiplication 189<br/>8.9.4. Declarations 190<br/>Table of Contents xni<br/>8.9.5. The program 191<br/>8.10. Division in Base b 194<br/>8.10.1. Description of the division algorithm 194<br/>8.10.2. Justification of the division algorithm 196<br/>8.10.3. Effective estimates of integer parts 197<br/>8.10.4. A good division algorithm 200<br/>8.11. Sums of Fibonacci Numbers 200<br/>8.12. Odd Primes as a Sum of Two Squares 203<br/>8.13. Sums of Four Squares 207<br/>8.14. Highly Composite Numbers 208<br/>8.14.1. Several properties of highly composite numbers . . . 210<br/>8.14.2. Practical investigation of highly composite integers . 212<br/>8.15. Permutations: Johnson's'Algorithm 213<br/>8.15.1. The program Johnson 215<br/>8.16. The Count is Good 218<br/>8.16.1. Syntactic trees 219<br/>9. The Complex Numbers 225<br/>9.1. The Gaussian Integers 225<br/>9.1.1. Euclidean division 226<br/>9.1.2. Irreducibles 226<br/>9.1.3. The program 231<br/>9.2. Bases of Numeration in the Gaussian Integers 234<br/>9.2.1. The modulo beta map 234<br/>9.2.2. How to find an exact system of representatives .... 235<br/>9.2.3. Numeration system in base beta 236<br/>9.2.4. An algorithm for expression in base beta 237<br/>9.3. Machin Formulas 240<br/>9.3.1. Uniqueness of a Machin formula 242<br/>9.3.2. Proof of Proposition 9.3.1 243<br/>9.3.3. The Todd condition is necessary 244<br/>9.3.4. The Todd condition is sufficient 244<br/>9.3.5. Kern's algorithm 245<br/>9.3.6. How to get rid of the Arctangent function 249<br/>9.3.7. Examples 251<br/>10. Polynomials 253<br/>10.1. Definitions 253<br/>10.2. Degree of a Polynomial 254<br/>10.3. How to Store a Polynomial 254<br/>10.4. The Conventions we Adopt 256<br/>10.5. Euclidean Division 259<br/>10.6. Evaluation of Polynomials: Homer's Method 261<br/>10.7. Translation and Composition 262<br/>xiv Table of Contents<br/>10.7.1. Change of origin 262<br/>10.7.2. Composing polynomials 265<br/>10.8. Cyclotomic Polynomials 265<br/>10.8.1. First formula 266<br/>10.8.2. Second formula 268<br/>10.9. Lagrange Interpolation 269<br/>10.10. Basis Change 273<br/>10.11. Differentiation<br/>and Discrete Taylor Formulas 275<br/>10.11.1. Discrete differentiation 275<br/>10.12. Newton-Girard Formulas 278<br/>10.13. Stable Polynomials 280<br/>10.14. Factoring a Polynomial with Integral Coefficients 286<br/>10.14.1. Why integer (instead of rational) coefficients? . . . 286<br/>10.14.2. Kronecker's factorization algorithm 288<br/>10.14.3. Use of stable polynomials 290<br/>10.14.4.<br/>The program 291<br/>10.14.5. Last remarks 294<br/>11. Matrices 297<br/>11.1. Z-Linear Algebra 297<br/>11.1.1. The bordered matrix trick 300<br/>11.1.2. Generators of a subgroup 301<br/>11.1.3. The Blankinship algorithm 301<br/>11.1.4. Hermite matrices 303<br/>11.1.5. The program Hermite 305<br/>11.1.6. The incomplete basis theorem 312<br/>11.1.7. Finding a basis<br/>of a subgroup 316<br/>11.2. Linear Systems with Integral Coefficients 318<br/>11.2.1. Theoretical results 318<br/>11.2.2. The case of a matrix in column echelon form .... 318<br/>11.2.3. General case 320<br/>11.2.4. Case of a single equation 321<br/>11.3. Exponential of a Matrix: Putzer's Algorithm 323<br/>11.4. Jordan Reduction 326<br/>11.4.1. Review 326<br/>11.4.2. Reduction of a nilpotent endomorphism 327<br/>11.4.3. The Pittelkow-Runckel algorithm 329<br/>11.4.4. Justification<br/>of the Pittelkow-Runckel algorithm . . . 332<br/>11.4.5. A complete example 333<br/>11.4.6. Programming 336<br/>12. Recursion 337<br/>12.1. Presentation 337<br/>12.1.1. Two simple examples 337<br/>Table of Contents xv<br/>12.1.2. Mutual recursion 339<br/>12.1.3. Arborescence of recursive calls 340<br/>12.1.4. Induction and recursion 340<br/>12.2. The Ackermann function 343<br/>12.3. The Towers of Hanoi 345<br/>12.4. Baguenaudier 348<br/>12.5. The Hofstadter Function 351<br/>12.6. How to Write a Recursive Code 352<br/>12.6.1. Sorting by dichotomy 353<br/>13. Elements of compiler theory 359<br/>13.1. Pseudocode 359<br/>13.1.1. Description of pseudocode 360<br/>13.1.2. How to compile a pseudocode program by hand . . 365<br/>13.1.3. Translation of a conditional 366<br/>13.1.4. Translation of a loop 368<br/>13.1.5. Function calls 369<br/>13.1.6. A very efficient technique 372<br/>13.1.7. Procedure calls 374<br/>13.1.8. The factorial function 377<br/>13.1.9. The Fibonacci numbers 379<br/>13.1.10. The Hofstadter function 381<br/>13.1.11.<br/>The Towers of Hanoi 382<br/>13.2. A Pseudocode Interpreter 385<br/>13.3. How to Analyze an Arithmetic Expression 400<br/>13.3.1. Arithmetic expressions 401<br/>13.3.2. How to recognize an arithmetic expression 404<br/>13.4. How to Evaluate an Arithmetic Expression 410<br/>13.5. How to Compile an Arithmetic Expression 415<br/>13.5.1. Polish notation 415<br/>13.5.2. A Compiler for arithmetic expressions 420<br/> |
942 ## - ADDED ENTRY ELEMENTS (KOHA) | |
Koha item type | General Books |
Withdrawn status | Lost status | Damaged status | Not for loan | Home library | Current library | Shelving location | Date acquired | Full call number | Accession number | Date last seen | Koha item type |
---|---|---|---|---|---|---|---|---|---|---|---|
Central Library, Sikkim University | Central Library, Sikkim University | General Book Section | 29/08/2016 | 519.7 SER/P | P34865 | 29/08/2016 | General Books |