An invitation to von Neumann algebras
Material type:
TextSeries: UniversitextPublication details: New York : Springer-Verlag, c1987.Description: xiv, 171 p. : ill. ; 24 cmISBN: - 0387963561 (pbk.) :
- 9780387963563
- 512.55 19 SUN/I
| Cover image | Item type | Current library | Home library | Collection | Shelving location | Call number | Materials specified | Vol info | URL | Copy number | Status | Notes | Date due | Barcode | Item holds | Item hold queue priority | Course reserves | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
|
Central Library, Sikkim University General Book Section | 512.55 SUN/I (Browse shelf(Opens below)) | Available | 053131 |
Includes index.
0 Introduction.- 0.1 Basic operator theory.- 0.2 The predual L(H)*.- 0.3 Three locally convex topologies on L(H).- 0.4 The double commutant theorem.- 1 The Murray — von Neumann Classification of Factors.- 1.1 The relation… ~… (rel M).- 1.2 Finite projections.- 1.3 The dimension function.- 2 The Tomita — Takesaki Theory.- 2.1 Noncommutative integration.- 2.2 The GNS construction.- 2.3 The Tomita-Takesaki theorem (for states).- 2.4 Weights and generalized Hilbert algebras.- 2.5 The KMS boundary condition.- 2.6 The Radon-Nikodym theorem and conditional expectations.- 3 The Connes Classification of Type III Factors.- 3.1 The unitary cocycle theorem.- 3.2 The Arveson spectrum of an action.- 3.3 The Connes spectrum of an action.- 3.4 Alternative descriptions of ?(M).- 4 Crossed-Products.- 4.1 Discrete crossed-products.- 4.2 The modular operator for a discrete crossed-product.- 4.3 Examples of factors.- 4.4 Continuous crossed-products and Takesaki’s duality theorem.- 4.5 The structure of properly infinite von Neumann algebras.- Appendix: Topological Groups.- Notes.
There are no comments on this title.
